Skip to main content
Log in

Second-Order Subelliptic Operators on Lie Groups I: Complex Uniformly Continuous Principal Coefficients

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

We consider second-order subelliptic operators with complex coefficients over a connected Lie group G. If the principal coefficients are right uniformly continuous then we prove that the operators generate strongly continuous holomorphic semigroups with kernels K satisfying Gaussian bounds. Moreover, the kernels are Hölder continuous and for each ν ∈〈0, 1〉 and κ > 0 one has estimates

$$\left| {K_z \left( {k^{ - 1} g;l^{ - 1} h} \right) - K_z \left( {g;h} \right)} \right| \leqslant a\left| z \right|^{ - D'/2_e {\omega }\left| z \right|} \left( {\frac{{\left| k \right|^\prime + \left| l \right|^\prime }}{{\left| z \right|^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} + \left| {gh^{ - 1} } \right|^\prime }}} \right)^v {e - b}\left( {\left| {gh^{ - 1} } \right|^\prime } \right)^2 \left| z \right|^{ - 1} $$

for g, h, k, lG and all z in a subsector of the sector of holomorphy with \(\left| k \right|^\prime + \left| l \right|^\prime \leqslant \kappa \left| z \right|^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} + 2^{ - 1} \left| {gh^{ - 1} } \right|^\prime\) where \(\left| {\; \cdot \;} \right|^\prime \) denotes the canonical subelliptic modulus and D " the local dimension.

These results are established by a blend of elliptic and parabolic techniques in which De Giorgi estimates and Morrey–Campanato spaces play an important role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arendt, W. and Bukhvalov, A.V.: Integral representations of resolvents and semigroups, Forum Math. 6 (1994), 111-135.

    Google Scholar 

  2. Arendt, W. and Elst, A. F. M. ter: Gaussian estimates for second order elliptic operators with boundary conditions, J. Operator Theory 38 (1997), 87-130.

    Google Scholar 

  3. Aronson, D. G.: Bounds for the fundamental solution of a parabolic equation, Bull. Amer. Math. Soc. 73 (1967), 890-896.

    Google Scholar 

  4. Auscher, P.: Regularity theorems and heat kernel for elliptic operators, J. London Math. Soc. 54 (1996), 284-296.

    Google Scholar 

  5. Auscher, P., Coulhon, T. and Tchamitchian, P.: Absence de principe du maximum pour certaines équations paraboliques complexes, Colloq. Math. 71 (1996), 87-95.

    Google Scholar 

  6. Auscher, P., McIntosh, A. and Tchamitchian, P.: Heat kernels of second order complex elliptic operators and their applications, J. Funct. Anal. 152 (1998), 22-73.

    Google Scholar 

  7. Auscher, P., McIntosh, A. and Tchamitchian, P.: Noyau de la chaleur d'opérateurs elliptiques complexes, Math. Res. Lett. 1 (1994), 37-45.

    Google Scholar 

  8. Auscher, P. and Tchamitchian, P.: Sur un contre-exemple aux estimations gaussiennes pour les opérateurs elliptiques complexes, Preprint, 1994.

  9. Bratteli, O. and Robinson, D. W.: Subelliptic operators on Lie groups: Variable coefficients, Acta Appl. Math. 42 (1996), 1-104.

    Google Scholar 

  10. Burns, R. J., Elst, A. F. M. ter and Robinson, D. W.: L p -regularity of subelliptic operators on Lie groups, J. Operator Theory 31 (1994), 165-187.

    Google Scholar 

  11. Davies, E. B.: Heat Kernels and Spectral Theory, Cambridge Tracts in Math. 92. Cambridge University Press, Cambridge, 1989.

    Google Scholar 

  12. Elst, A. F. M. ter and Robinson, D. W.: Subcoercive and subelliptic operators on Lie groups: Variable coefficients, Publ. RIMS Kyoto Univ. 29 (1993), 745-801.

    Google Scholar 

  13. Elst, A. F. M. ter and Robinson, D. W.: Subelliptic operators on Lie groups: Regularity, J. Austral. Math. Soc. Ser. A 57 (1994), 179-229.

    Google Scholar 

  14. Elst, A. F. M. ter and Robinson, D. W.: Subcoercivity and subelliptic operators on Lie groups I: Free nilpotent groups, Potential Anal. 3 (1994), 283-337.

    Google Scholar 

  15. Elst, A. F. M. ter and Robinson, D. W.: Subcoercivity and subelliptic operators on Lie groups II: The general case, Potential Anal. 4 (1995), 205-243.

    Google Scholar 

  16. Elst, A. F. M. ter and Robinson, D. W.: Reduced heat kernels on nilpotent Lie groups, Comm. Math. Phys. 173 (1995), 475-511.

    Google Scholar 

  17. Elst, A. F. M. ter and Robinson, D. W.: Second-order subelliptic operators on Lie groups II: Real measurable principal coefficients, in: Proceedings for the First International Conference of Semigroups of Operators: Theory and Applications, Newport Beach, California. To appear.

  18. Elst, A. F. M. ter and Robinson, D. W.: Second-order strongly elliptic operators on Lie groups with Hölder continuous coefficients, J. Austral.Math. Soc. Ser. A 63 (1997), 297-363.

    Google Scholar 

  19. Elst, A. F.M. ter and Robinson, D.W.: Weighted subcoercive operators on Lie groups, J. Funct. Anal. 157 (1998), 88-163.

    Google Scholar 

  20. Elst, A. F. M. ter and Robinson, D. W.: Second-order subelliptic operators on Lie groups III: Hölder continuous coefficients, Calc. Var. Partial Differential Equations 8 (1999), 327-363.

    Google Scholar 

  21. Elst, A. F. M. ter, Robinson, D. W. and Sikora, A.: Heat kernels and Riesz transforms on nilpotent Lie groups, Colloq. Math. 74 (1997), 191-218.

    Google Scholar 

  22. Elst, A. F. M. ter, Robinson, D. W. and Sikora, A.: Riesz transforms and Lie groups of polynomial growth, J. Funct. Anal. 162 (1999), 14-51.

    Google Scholar 

  23. Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Ann. of Math. Stud. 105, Princeton University Press, Princeton, 1983.

    Google Scholar 

  24. Giaquinta, M.: Introduction to Regularity Theory for Nonlinear Elliptic Systems, Lectures in Math. ETH Zürich, Birkhäuser Verlag, Basel, 1993.

    Google Scholar 

  25. Giorgi, E. De.: Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino cl. Sci. Fis. Mat. Nat. 3 (1957), 25-43.

    Google Scholar 

  26. Hebisch, W.: On heat kernels on Lie groups, Math. Z. 210 (1992), 593-605.

    Google Scholar 

  27. Hörmander, L.: Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171.

    Google Scholar 

  28. Jerison, D.: The Poincaré inequality for vector fields satisfying Hörmander's condition, Duke Math. J. 53 (1986), 503-523.

    Google Scholar 

  29. Jerison, D. S. and Sánchez-Calle, A.: Estimates for the heat kernel for a sum of squares of vector fields, Indiana Univ. Math. J. 35 (1986), 835-854.

    Google Scholar 

  30. Kato, T.: Perturbation Theory for Linear Operators, 2nd edn, Grundlehren Math. Wiss. 132, Springer-Verlag, Berlin, 1984.

    Google Scholar 

  31. Maz'ya, V. G., Nazarov, S. A. and Plamenevsk\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\imath}\)i, B. A.: Absence of the De Giorgi-type theorems for strongly elliptic equations with complex coefficients, J. Soviet. Math. 28 (1985), 726-739.

    Google Scholar 

  32. Morrey, C. B.: Multiple Integrals in the Calculus of Variations, Springer-Verlag, Heidelberg, 1966.

    Google Scholar 

  33. Nagel, A., Ricci, F. and Stein, E. M.: Harmonic analysis and fundamental solutions on nilpotent Lie groups, in: C. Sadosky (ed.), Analysis and Partial Differential Equations, Lecture Notes in Pure and Appl. Math. 122, Marcel Dekker, New York, 1990, pp. 249-275.

    Google Scholar 

  34. Nagel, A., Stein, E. M. and Wainger, S.: Balls and metrics defined by vector fields I: Basic properties, Acta Math. 155 (1985), 103-147.

    Google Scholar 

  35. Nash, J.: Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80 (1958), 931-954.

    Google Scholar 

  36. Robinson, D. W.: Elliptic Operators and Lie Groups, Oxford Math. Monographs, Oxford University Press, Oxford, 1991.

    Google Scholar 

  37. Sánchez-Calle, A.: Fundamental solutions and geometry of the sum of squares of vector fields, Invent. Math. 78 (1984), 143-160.

    Google Scholar 

  38. Stein, E. M.: Singular Integrals and Differential Properties of Functions, Princeton Math. Ser. 30, Princeton Univ. Press, Princeton, NJ, 1970.

    Google Scholar 

  39. Varopoulos, N. T.: Diffusion on Lie groups, Canad. J. Math. 46 (1994), 438-448.

    Google Scholar 

  40. Varopoulos, N. T., Saloff-Coste, L. and Coulhon, T.: Analysis and Geometry on Groups, Cambridge Tracts in Math. 100, Cambridge Univ. Press, Cambridge, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ter Elst, A.F.M., Robinson, D.W. Second-Order Subelliptic Operators on Lie Groups I: Complex Uniformly Continuous Principal Coefficients. Acta Applicandae Mathematicae 59, 299–331 (1999). https://doi.org/10.1023/A:1006373625999

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006373625999

Navigation