Skip to main content
Log in

AFLP Fingerprinting for Assessing Intraspecific Variation and Genome Mapping in Mites

  • Published:
Experimental & Applied Acarology Aims and scope Submit manuscript

Abstract

Molecular genetic techniques have come a long way in the last decade. With the advent of PCR, genetic markers are now accessible for all organisms, including mites. However, there is usually a trade-off between the accuracy of the molecular technique or genetic marker and expediency. In mites, many molecular techniques are not applicable due to their small size. Here we describe a relatively new molecular fingerprinting technique, amplified fragment length polymorphism (AFLP), which is currently used widely in plant genomic research. We outline the AFLP procedure adapted for mites, show results using this technique from our own research and discuss the benefits and limitations of AFLPs for assessing genetic variation and for genome mapping. It is our intention to highlight the possible use of AFLPs as genetic markers with a broad application in acarological research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Antolin, M.F., Bosio, C.F., Cotton, J., Sweeney, W., Strand, M.R. and Black IV, W.C. 1996. Intensive linkage mapping in a wasp (Bracon hebetor) and a mosquito (Aedes aegypti) with single-strand confirmation polymorphism analysis of random amplified polymorphic DNA. Genetics 143: 1727–1738.

    PubMed  Google Scholar 

  • Beismann, H., Barker, J.H.A., Karp, A. and Speck, T. 1997. AFLP analysis sheds light on distribution of two Salix species and their hybrid along a natural gradient. Mol. Ecol. 6: 989–993.

    Google Scholar 

  • Bohonak, A.J. 1999. Effect of insect-mediated dispersal on the genetic structure of postglacial water mite populations. Heredity 82: 451–461.

    PubMed  Google Scholar 

  • Castiglioni, R., Ajmone-Marsan, P., van Wijk, R. and Motto, M. 1999. AFLP markers in a molecular linkage map of maize: co-dominant scoring and linkage group distribution. Theor. Appl. Gen. 99: 425–431.

    Google Scholar 

  • De Boer, R. 1985. Reproductive barriers. In: Spider mites, their biology, natural enemies and control, W. Helle and M.W. Sabelis (eds.), pp 193–199. Elsevier, Amsterdam.

    Google Scholar 

  • Edwards., D.D., Bogardus, R. and Wilhite, N. 1998a. Geographic differences in host specialization between symbiotic water mites Unionicola formosa and Unionicola foili (Acari: Unionicolidae). Exp. Appl. Acarol. 22: 683–697.

    Google Scholar 

  • Edwards, O.R., Melo, E.L., Smith, L. and Hoy, M.A. 1998b. Discrimination of three Typhlodramalus species (Acari: Phytoseiidae) using random amplified polymorphic DNA markers. Exp. Appl. Acarol. 22: 101–109.

    Google Scholar 

  • Fenton, B., Malloch, G. and Moxey, E. 1997. Analysis of eriophid mite rDNA internal transcribed spacer sequences reveals variable simple sequence repeats. Insect Mol. Biol. 6: 23–32.

    PubMed  Google Scholar 

  • Fukatsu, T. 1999. Acetone preservation: a practical technique for molecular analysis. Mol. Ecol. 8: 1935–1945.

    PubMed  Google Scholar 

  • Gadau, J., Page, R.E. and Werren, J.H. 1999. Mapping of hybrid incompatibility loci in Nasonia. Genetics 153: 1731–1741.

    PubMed  Google Scholar 

  • Goka K. and Takafuji A. 1997. Identification among seven species of spider mites (Tetranychus) (Acari; Tetranychidae) based on enzyme differentiation detected by electrophoresis. Appl. Ent. Zool. 32:127–134.

    Google Scholar 

  • Gomi, K. and Gotoh, T. 1996. Host plant preference and genetic compatibility of the Kanzawa spider mite, Tetranychus kanzawai Kishida (Acari: Tetranychidae). Appl. Ent. Zool. 31: 417–425.

    Google Scholar 

  • González, M., Rodríguez, R., Zavala, M.E., Jacobo, J.L., Hernández, F., Acosta, J., Martínez, O. and Simpson, J. 1998. Characterization of Mexican isolates of Colletotrichum lindemuthianum by using differential cultivars and molecular markers. Phytopathol. 88: 292–299.

    Google Scholar 

  • Gotoh, T., Bruin, J., Sabelis, M.W. and Menken, S.B.J. 1993. Host race formation in Tetranychus urticae – genetic differentiation, host plant preference, and mate choice in a tomato and cucumber strain. Ent. Exp. Appl. 68: 171–178.

    Google Scholar 

  • Guisantes, J.A., Eraso, E., Felleisen, R., Martinez, J. and Gottstein, B. 1996. Application of random amplified polymorphic DNA (RAPD) assay to the study of mites related to allergic diseases. J. Invest. Allergol. Clin. Immunol. 6: 65–68.

    Google Scholar 

  • Heckel, D.G. 1993. Comparative genetic linkage mapping in insects. Annu. Rev. Entomol. 38: 381–408.

    Google Scholar 

  • Holloway, A.K., Strand, M.R., Black IV, W.C. and Antolin, M.F. 2000. Linkage analysis of sex determination in Bracon sp. near hebetor (Hymenoptera: Braconidae). Genetics 154: 205–212.

    PubMed  Google Scholar 

  • Hunt, G.J. and Page Jr., R.E. 1994. Linkage analysis of sex determination in the honey bee (Apis mellifera). Mol. Gen. Genet. 244: 512–518.

    PubMed  Google Scholar 

  • Kennedy, J.S., van Impe, G., Hance, T. and Lebrun, P. 1996. Demecology of the false spider mite, Brevipalpus phoenicis (Geijskes) (Acari, Tenuipalpidae). J. App. Entomol. 120: 493–499.

    Google Scholar 

  • Kitashima, Y. and Gotoh, T. 1995. Host range difference and reproductive incompatibility among five populations of the citrus red mite Panonychus citri (McGregor) (Acari: Tetranychidae). J. Acarol. Soc. Jpn. 4: 91–101.

    Google Scholar 

  • Kumar, P.L., Fenton, B. and Jones, A.T. 1999. Identification of Cecidophyopsis mites (Acari: Eriophydae) based on variable simple sequence repeats of ribosomal DNA internal transcribed spacer-1 sequences via multiplex PCR. Insect Mol. Biol. 8: 347–357.

    PubMed  Google Scholar 

  • Lander, E.S. and Botstein, D. 1989. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199.

    PubMed  Google Scholar 

  • Laurent, V., Wajnberg, E., Mangin, B., Schiex, T., Gaspin, C. and Vanlerberghe-Masutti, F. 1998. A composite genetic map of the parasitoid wasp Trichogramma brassicae based on RAPD markers. Genetics 150: 275–282.

    PubMed  Google Scholar 

  • Lynch, M. and Milligan, B.G. 1994. Analysis of population genetic structure with RAPD markers. Mol. Ecol. 3: 91–99.

    PubMed  Google Scholar 

  • Lynch, M. and Walsh, B. 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Michelmore, R.W., Paran, I. and Kesseli, R.V. 1991. Identification of markers linked to disease-resistance genes by bulk segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA 88: 9828–9832.

    PubMed  Google Scholar 

  • Miller, L.M. 2000. Classifying genealogical origins in hybrid populations using dominant markers. J. Hered. 91: 46–49.

    PubMed  Google Scholar 

  • Mueller, U.G. and Wolfenbarger, L.L. 1999. AFLP genotyping and fingerprinting. TREE 14: 389–394.

    PubMed  Google Scholar 

  • Navajas, M. 1998. Host plant utilization in the spider mite Tetranychus urticae (Acari, Tetranychidae) – insights from molecular phylogeography. Exp. Appl. Acarol. 22: 201–214.

    Google Scholar 

  • Perrot-Minnot, M.J., Lagnel, J., Migeon, A. and Navajas, M. 2000. Tracking paternal genes with DALP markers in a pseudoarrhenotokous reproductive system: biparental transmission but haplodiploid-like inheritance in the mite Neoseiulus californicus. Heredity 84: 702–709.

    PubMed  Google Scholar 

  • Perrot-Minnot, M.J. and Navajas, M. 1995. Biparental inheritance of RAPD markers in males of the pseudo-arrhenotokous mite Typhlodromus pyri. Genome 38: 838–844.

    Google Scholar 

  • Piepho, H.P. and Koch, G. 2000. Codominant analysis of banding data from a dominant marker system by normal mixtures. Genetics 155: 1459–1468.

    PubMed  Google Scholar 

  • Pijnacker, L.P., Ferwerda, M.A., Bolland, H.R. and Helle, W. 1980. Haploid female parthenogenesis in the false spider mite Brevipalpus obovatus (Acari: Tenuipalpidae). Genetica 51: 211–214.

    Google Scholar 

  • Pijnacker, L.P., Ferwerda, M.A. and Helle, W. 1981. Cytological investigations on the female and male reproductive system of the parthenogenetic privet mite Brevipalpus obovatus Donnadieu (Phytoptipalpidae: Acari). Acarologia 22: 157–163.

    Google Scholar 

  • Roethele, J.B., Feder, J.L., Berlocher, S.H., Kreitman, M.E. and Lashkari, D.A. 1997. Toward a molecular genetic linkage map for the apple maggot fly (Diptera: Tephritidae): comparison of alternative strategies. Ann. Ent. Soc. Am. 90: 470–479.

    Google Scholar 

  • Rosendahl, S. and Taylor, J.W. 1997. Development of multiple genetic markers for studies of genetic variation in arbuscular mycorrhizal fungi using AFLP. Mol. Ecol. 6: 821–829.

    Google Scholar 

  • Sunnucks, P. 2000. Efficient genetic markers for population biology. TREE 15: 199–203.

    PubMed  Google Scholar 

  • Swofford, D.L. 1996. PAUP*: Phylogenetic Analysis Using Parsimony (and Other Methods, Version 4.0. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Tibayrenc, M., Kjellberg, F., Arnaud, J. et al. 1991. Are eukaryotic microorganisms clonal or sexual? A population genetics vantage. Proc. Natl. Acad. Sci. USA 88: 5129–5133.

    PubMed  Google Scholar 

  • Tsagkarakou, A., Navajas, M., Lagnel, J. and Pasteur, N. 1997. Population structure in the spider mites Tetranychus urticae (Acari: Tetranychidae) from Crete based on multiple allozymes. Heredity 78: 84–94.

    Article  Google Scholar 

  • Vos, P., Hogers, R., Bleeker, M., Reijans, M., Lee, T. van de, Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M. and Zabeau, M. 1995. AFLP: a new technique for DNA fingerprinting. Nucl. Acid Res. 23: 4407–4414.

    Google Scholar 

  • Weeks, A.R., Fripp, Y.J. and Hoffmann, A.A. 1995. Genetic structure of Halotydeus destructor and Penthaleus major populations in Victoria (Acari, Penthaleidae). Exp. Appl. Acarol. 19: 633–646.

    Google Scholar 

  • Yasukochi, Y. 1998. A dense genetic map of the silkworm, Bombyx mori, covering all chromosomes based on 1018 molecular markers. Genetics 150: 1513–1525.

    PubMed  Google Scholar 

  • Zheng, L., Benedict, M.Q., Cornel, A.J., Collins, F.H. and Kafatos, F.C. 1996. An integrated map of the African human malaria vector mosquito, Anopheles gambiae. Genetics 143: 941–952.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weeks, A., van Opijnen, T. & Breeuwer, J. AFLP Fingerprinting for Assessing Intraspecific Variation and Genome Mapping in Mites. Exp Appl Acarol 24, 775–793 (2000). https://doi.org/10.1023/A:1006486400800

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006486400800

Navigation