Skip to main content
Log in

Spectra of Unit Tangent Bundles of Compact Hyperbolic Riemann Surfaces

  • Published:
Annals of Global Analysis and Geometry Aims and scope Submit manuscript

Abstract

Recent results of Gordon, Mao and Pesce imply that isospectral compact hyperbolic Riemann surfaces have Laplace and length isospectral unit tangent bundles. In this note we give explicit formulae relating the spectra of such surfaces and those of their unit tangent bundles, and use them to prove the converses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ballmann, W., Brin, M. and Burns, K.: On surfaces with no conjugate points, J. Differential Geom. 25 (1987), 249–273.

    Google Scholar 

  2. Berger, M.: Geometry of the spectrum I, in Chern, S. S. and Ossermann, R. (eds.), Differential Geometry, Proc. of Symposia in Pure Math., Vol. XXVII, Part 2, American Mathematical Society, Providence, RI, 1975, pp. 129–152.

    Google Scholar 

  3. Colin de Verdière, Y.: Spectre du Laplacien et longueurs des géodésiques périodiques I, II, Compositio Math. 27 (1973),83–106, 159–184.

    Google Scholar 

  4. Gordon, C.: The Laplace spectra versus the length spectra of Riemannian manifolds, in Deturk, D. M. (ed.), Nonlinear Problems in Geometry, Contemp. Math., Vol. 51, American Mathematical Society, Providence, RI, 1986, pp. 63–80.

    Google Scholar 

  5. Gordon, C. and Mao, Y.: Comparisons of Laplace spectra, length spectra and geodesic flows of some Riemannian manifolds, Math. Res. Lett. 1 (1994), 677–688.

    Google Scholar 

  6. Gordon, C. and Wilson, E.: The spectrum of the Laplacian on Riemannian Heisenberg manifolds, Michigan Math. J. 33 (1986), 253–271.

    Google Scholar 

  7. Hotta, R. and Parthasarathy, R.: Multiplicity formulae for discrete series, Invent. Math. 26 (1974), 133–178.

    Google Scholar 

  8. Lang, S.: Samp;#x2113;2(R), Graduate Texts in Math., Vol. 105, Springer-Verlag, Berlin, 1985.

    Google Scholar 

  9. Milnor, J.: Curvatures of left invariant metrics on Lie groups, Adv. Math. 21(3) (1976), 293–329.

    Google Scholar 

  10. Pesce, H.: Variétés hyperboliques et elliptiques fortement isospectrales, J. Funct. Anal. 134(2) (1995), 363–391.

    Google Scholar 

  11. Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds, Tôhoku Math. J. 10 (1958), 338–354.

    Google Scholar 

  12. Scott, P.: The geometries of 3-manifolds, Bull. London Math. Soc. 15(56) (1983), 401–487.

    Google Scholar 

  13. Vignéras, M.-F.: Variétés riemanniennes isospectrales et non isométriques, Ann. of Math. (2) 112 (1980), 21–32.

    Google Scholar 

  14. Ziller, W.: Closed geodesics on homogeneous spaces, Math. Z. 152 (1976), 67–88.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salvai, M. Spectra of Unit Tangent Bundles of Compact Hyperbolic Riemann Surfaces. Annals of Global Analysis and Geometry 16, 357–370 (1998). https://doi.org/10.1023/A:1006559507739

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006559507739

Navigation