Skip to main content
Log in

Thermophysical Properties of Gaseous Tungsten Hexafluoride from Speed-of-Sound Measurements

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The speed of sound was measured in gaseous WF6 using a highly precise acoustic resonance technique. The data span the temperature range from 290 to 420 K and the pressure range from 50 kPa to the lesser of 300 kPa or 80% of the sample's vapor pressure. At 360 K and higher temperatures, the data were corrected for a slow chemical reaction of the WF6 within the apparatus. The speed-of-sound data have a relative standard uncertainty of 0.005%. The data were analyzed to obtain the ideal-gas heat capacity as a function of the temperature with a relative standard uncertainty of 0.1%. These heat capacities are in reasonable agreement with those determined from spectroscopic data. The speed-of-sound data were fitted by virial equations of state to obtain the temperature dependent density virial coefficients. Two virial coefficient models were employed, one based on square-well intermolecular potentials and the second based on a hard-core Lennard–Jones intermolecular potential. The resulting virial equations reproduced the sound-speed data to within ±0.005% and may be used to calculate vapor densities with relative standard uncertainties of 0.1% or less. The hard-core Lennard–Jones potential was used to estimate the viscosity and the thermal conductivity of dilute WF6. The predicted viscosities agree with published data to within 5% and can be extrapolated reliably to higher temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Zahlenwerte und Funktionen, Band II, Teil 2, Landolt-Börnstein (pringer-Verlag, Berlin-Göttingen/Heidelberg, 1960).

  2. E. F. Westrum, Pure Appl. Chem. 8:187 (1964).

    Google Scholar 

  3. V. V. Malyshev, Teplofiz. Vysokikh Temp. 11:1010 (1973).

    Google Scholar 

  4. K. A. Gillis and M. R. Moldover, Int. J. Thermophys. 17:1305 (1996).

    Google Scholar 

  5. J. J. Hurly, Int. J. Thermophys. 20:455 (1999).

    Google Scholar 

  6. A. Heintz and R. N. Lichtenthaler, Ber. Bunsenges Phys. Chem. 80:962 (1976).

    Google Scholar 

  7. A. R. H. Goodwin and M. R. Moldover, J. Chem. Phys. 95:5236 (1991).

    Google Scholar 

  8. K. A. Gillis, Int. J. Thermophys. 18:73 (1997).

    Google Scholar 

  9. K. A. Gillis, Int. J. Thermophys. 15:821 (1994).

    Google Scholar 

  10. K. A. Gillis, A. R. H. Goodwin, and M. R. Moldover, Rev. Sci. Instrum. 62:2213 (1991).

    Google Scholar 

  11. J. W. S. Rayleigh, Theory of Sound (Dover, New York, 1945).

    Google Scholar 

  12. M. W. Chase, C. A. Davies, J. R. Downey, D. J. Frurip, R. A. McDonald, and A. N. Syverud, J. Phys. Chem. Ref. Data 14:1166 (1985).

    Google Scholar 

  13. M. W. Chase, Private Communication (National Institute of Standards and Technology, Gaithersburg, MD, 1999).

    Google Scholar 

  14. G. Nagarajan, Bull. Soc. Chim. Belg. 71:77 (1962).

    Google Scholar 

  15. G. Nagarajan and D. C. Brinkley, Z. Naturforsch. 26A:1658 (1977).

    Google Scholar 

  16. J. P. M. Trusler, Int. J. Thermophys. 18:635 (1997).

    Google Scholar 

  17. C. G. Maitland and E. B. Smith, Chem. Phys. Lett. 22:443 (1973).

    Google Scholar 

  18. T. Kihara, Rev. LMod. Phys. 25:831 (1953).

    Google Scholar 

  19. E. A. Mason and T. H. Spurling, The Virial Equation of State (Pergamaon Press, Oxford, 1969).

    Google Scholar 

  20. R. J. Dulla, J. S. Rowlinson, and W. R. Smith, Mol. Phys. 21:229 (1971).

    Google Scholar 

  21. R. F. Boisvert, S. E. Howe, D. K. Kahaner, and J. L. Springmann, The Guide to Available Mathematical Software, NISTIR 90-4237 (1990).

  22. B. M. Axilrod and E. J. Teller, J. Chem. Phys. 11:299 (1943).

    Google Scholar 

  23. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

    Google Scholar 

  24. A. Eucken, Phys. Z 14:324 (1913).

    Google Scholar 

  25. R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids, 3rd. ed. (McGraw-Hill, New York, 1977).

    Google Scholar 

  26. K. A. Gillis, J. B. Mehl, and M. R. Moldover, Rev. Sci. Instrum. 67:1850 (1996).

    Google Scholar 

  27. P. Morizot, J. Ostorero, and P. Plurien, J. Chem. Phys. 70:1582 (1973).

    Google Scholar 

  28. A. Heintz and R. N. Lichtenthaler, Ber. Bunsenges Phys. Chem. 80:962 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hurly, J.J. Thermophysical Properties of Gaseous Tungsten Hexafluoride from Speed-of-Sound Measurements. International Journal of Thermophysics 21, 185–206 (2000). https://doi.org/10.1023/A:1006617223481

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006617223481

Navigation