Skip to main content
Log in

Theoretical analysis of optimal quasi-phase matched second harmonic generation waveguide structure in LiTaO3 substrates

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Based on the QPM structure and the coupled-mode theory, the maximum SHG conversion efficiency of QPM-SHG waveguides in LiTaO3 substrates is analyzed by optimizing the mode confinement and the mode overlap factors. For TM00(ω)-to-TM00(2ω) conversion with a non-square shaped domain inversion QPM structure, the mode confinement and mode overlap factor are dependent not only on the optical field distribution for the fundamental and the SH waves in the waveguide, but also on the domain inversion shape. With the assumption that the refractive index profile of an annealed, proton exchanged LiTaO3 channel waveguide is an exponential decay function in the depth direction, and a Gaussian function in the width direction, the analytical expression of the optical field distribution for the lowest order mode can be obtained. By considering both a non-Gaussian field distribution and a non-square shaped domain inversion structure, the theoretical values for achieving the optimal QPM-SHG waveguide structure are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Armstrong, N. Bloembergen and J. Ducuing, Phys. Rev. 127 (1962) 1918.

    Google Scholar 

  2. T. Suhara and H. Nishihara, IEEE J. Quantum Electronics QE-22 (6) (1986) 845.

    Google Scholar 

  3. E. J. Lim and M. M. Fejer, Electron. Lett. 25 (1989) 731.

    Google Scholar 

  4. K. Mizuuchi, K. Yamamoto and T. Taniuchi, Appl. Phys. Lett. 58 (24) (1991) 2732.

    Google Scholar 

  5. K. Mizuuchi and K. Yamamoto, J. Appl. Phys. 72 (11) (1992) 5061.

    Google Scholar 

  6. K. Mizuuchi, K. Yamamoto and T. Taniuchi, Appl. Phys. Lett. 59 (13) (1991) 1538.

    Google Scholar 

  7. K. Mizuuchi and K. Yamamoto, Appl Optics 33 (10) (1994) 1812.

    Google Scholar 

  8. C. J. van der Poel, Appl. Phys. Lett. 57 (1990) 2074.

    Google Scholar 

  9. J. L. Jackel, Appl. Phys. Lett. 41, (1982) 607.

    Google Scholar 

  10. K. Mizuuchi, J. Appl. Phys. 75 (3) (1994) 1311.

    Google Scholar 

  11. Yariv, Optical Electronics (Saunders College Publishing).

  12. N. Ramanujam and J. Burke, IEEE Journal of Quantum Electronics 33 (1997) 152.

    Google Scholar 

  13. W. X. Hou and T. C. Chong, Jpn. J. Appl. Phys. 35 (1996) 45.

    Google Scholar 

  14. N. H. Zhu, Optical and Quantum Electronics 25 (1993) 57.

    Google Scholar 

  15. N. H. Zhu, IEEE J. Quantum Electronics 28 (6) (1992) 1424.

    Google Scholar 

  16. A. Sharma, J Lightwave Technol. 6 (6) (1988) 1119.

    Google Scholar 

  17. Proc. SPIE, 2700 (1996) 140–149.

  18. H. Kogelnik, Theory of Dielectric Waveguides (Springer, Berlin 1975, p. 44).

    Google Scholar 

  19. H. Kogelnik, Theory of Optical Waveguides (Springer, Berlin 1990, pp. 18–20).

    Google Scholar 

  20. H. Nishihara, Optical Integrated Circuits (1989, pp. 34–35).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, P.F., Chong, T.C., Shi, L.P. et al. Theoretical analysis of optimal quasi-phase matched second harmonic generation waveguide structure in LiTaO3 substrates. Optical and Quantum Electronics 31, 337–349 (1999). https://doi.org/10.1023/A:1006988507435

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006988507435

Keywords

Navigation