Skip to main content
Log in

From Chemical Kinetics to Streamer Corona Reactor and Voltage Pulse Generator

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This paper discusses the global chemical kinetics of corona plasma-induced chemical reactions for pollution control. If there are no significant radical termination reactions, the pollution removal linearly depends on the corona energy density and/or the energy yield is a constant. If linear radical termination reactions play a dominant role, the removal rate shows experimental functions in terms of the corona energy density. If the radical concentration is significantly affected by nonlinear termination reactions, the removal rate depends on the square root of the corona energy density. These characteristics are also discussed with examples of VOCs and NOx removal and multiple processing. Moreover, this paper also discusses how to match a corona plasma reactor with a voltage pulse generator in order to increase the total energy efficiency. For a given corona reactor, a minimum peak voltage is found for matching a voltage pulse generator. Optimized relationship between the voltage rise time, the output impedance of a voltage pulse generator, and the stray capacitance of a corona reactor is presented. As an example, the paper discusses a 5.0-kW hybrid corona nonthermal plasma system for NOx removal from exhaust gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S.S. Joshi, Trans. Farad. Soc. 23, 227 (1927); Trans. Farad. Soc. 25, 108 (1929); Trans. Farad. Soc. 25, 137 (1929).

    Google Scholar 

  2. K. Yan, ed., Corona Plasmas for Pollution Control and Sustainable Development, EUT Research Rept., Eindhoven Univ. of Technology, The Netherlands (2000), pp.1-150.

  3. P.P.M. Blom, Ph.D. Dissertation, Eindhoven Univ. of Technology, The Netherlands (1997).

    Google Scholar 

  4. Y.L.M. Creyghton, Ph.D. Dissertation, Eindhoven Univ. Technology, The Netherlands (1994).

    Google Scholar 

  5. K. Yan, B.J.M. van Heesch, E.M. van Veldhuizen, M. Rea, and R. Li, J. Advan. Oxid. Technol. 4, 312 (1999).

    Google Scholar 

  6. K. Yan, E.M. van Veldhuizen, A.H.F.M. Baede, Y.L.M. Creyghton, and W.R. Rutgers, Proc. 11th Intern. Symp. Plasma Chemistry, Loughborough, UK (1993), pp.609-614.

  7. H. Shur, Plasma Chem. Plasma Process. 3, 1 (1983).

    Google Scholar 

  8. I. Gallimberti, Pure Appl. Chem. 60, 663 (1988).

    Google Scholar 

  9. A.A. Kulikovsky, IEEE Trans. Plasma Sci. 25, 439 (1997).

    Google Scholar 

  10. J. Li, W. Sun, B. Pashaie, and S.K. Dhali, IEEE Trans. Plasma Sci. 23, 672 (1995).

    Google Scholar 

  11. J.J. Lowke and R. Morrow, IEEE Trans. Plasma Sci. 23, 661 (1995).

    Google Scholar 

  12. E. Marode, D. Djermoune, S. Samson, and C. Deniset, Proc. 11th Symp. on Elementary Processes and Chemical Reactions in Low Temperature Plasma, June 22-26, Low Tatras (1998), pp.93-108.

  13. O. Eichwald, M. Yousfi, A. Hennad, and M.D. Benabdessadok, J. Appl. Phys. 82, 4781 (1997).

    Google Scholar 

  14. B.M. Penetrante, J.N. Bardsley, and M.C. Hsiao, Jpn. J. Appl. Phys. 26, 507 (1997).

    Google Scholar 

  15. E.M. van Veldhuizen, W.R. Rutgers, and V.A. Bityurin, Plasma Chem. Plasma Process. 16, 227 (1996).

    Google Scholar 

  16. K. Yan, S. Kanazawa, T. Ohkubo, and Y. Nomoto, Plasma Chem. Plasma Process. 19, 421 (1999).

    Google Scholar 

  17. K. Yan, S. Kanazawa, T. Ohkubo, and Y. Nomoto, Trans. IEEE Jpn. 119-A, 731 (1999).

    Google Scholar 

  18. L.A. Rosocha and R.A. Korzekwa, J. Adv. Oxid. Technol. 4, 247 (1999)

    Google Scholar 

  19. B.M. Penetrante, M.C. Hsiao, J.N. Bardsley, B.T. Merritt, G.E. Vogtlin, and P.H. Wallman, Pure Appl. Chem. 68, 1083 (1996).

    Google Scholar 

  20. G.K. Anderson, H. Snyder, and J. Coogan, Plasma Chem. Plasma Process. 19, 131 (1999).

    Google Scholar 

  21. A. Sjoberg, T.H.Teich, E. Henzle, and K. Hungerbuhler, J. Advan. Oxid. Technol. 4, 319 (1999).

    Google Scholar 

  22. R.G. Tonkyn, S.E. Barlow, and T.M. Orlando, J. Appl. Phys. 80, 4877 (1996).

    Google Scholar 

  23. C. Paradisi, M. Rea, G. Scorrano, A. Dono, S. Martinucci, and S. Pompolani, Proc. of NEDO Symp. Non-Thermal Discharge Plasma Technol. Air Pollution Control, Japan (1997), pp.58-64.

  24. K. Yan, H. Hui, M. Cui, J. Miao, X. Wu, C. Bao, and R. Li, J. Electrostatics 44, 17 (1998).

    Google Scholar 

  25. E.H.W.M. Smulders, B.E.J.M. van Heesch, and S.V.B. van Paasen, IEE Trans. Plasma Sci. 26, 1476 (1998).

    Google Scholar 

  26. E.J.M. van Heesch, A.J.M. Pemen, K. Yan, S.V.B. van Paasen, K.J. Ptasinski, Z. Matyáš, P.A.H.J. Huijbrechts, B.O.E. Hultermans, A. Nicoletti, B.P.P.M. Blom, and P. Zacharias, IEEE Trans. Plasma Sci., in press (2000).

  27. T. Yamamoto, J. Electrostatics 42, 227 (1997).

    Google Scholar 

  28. R. Li, K. Yan, J. Miao, and X. Wu, Chem. Eng. Sci. 53, 1529 (1988).

    Google Scholar 

  29. K. Yan, D. Higashi, S. Kanazawa, T. Ohkubo, Y. Nomoto, and J.S. Chang, Proc. 1998 IEE Jpn. Annu. Meet. 1, 248-249 (1998).

    Google Scholar 

  30. K. Yan, D. Higashi, S. Kanazawa, T. Ohkubo, Y. Nomoto, and J.S. Chang, Proc. NEDO Symp. Non-Thermal Discharge Plasma Technologies Air Contaminant Control, Japan (1997), pp.155-166.

  31. K. Yan, S. Kanazawa, T. Ohkubo, and Y. Nomoto, Trans. IEE Jpn. 119-A, 1065 (1999).

    Google Scholar 

  32. K. Yan, T. Yamamoto, S. Kanazawa, T. Ohkubo, Y. Nomoto, and J.S. Chang, J. Electro-statics 46, 207 (1999).

    Google Scholar 

  33. B.J.M. van Heesch, K. Yan, A.J.M. Pemen, P.A.H.J. Huijbrechts, F.M. van Gompel, Z. Matyáš, K.P.M. Gommers, S.V.B. van Paasen, H. van Leuken, and P.C.T. van der Laan, Proc. 14th Int. Symp. Plasma Chemistry, Praha, Czech Republic (1999), pp.1063-1068.

  34. K. Yan, J.M. van Heesch, A.J.M. Pemen, P.A.H.J. Huijbrechts, F.M. van Gompel, Z. Matyas, H. van Leuken, and P.C.T. van der Laan, IEEE Ind. Applications Soc. 2000 Annu. Meet. Italy, pp.592-599 (2000).

  35. M. Rea and K. Yan, IEEE Trans. Ind. Applications 31, 507 (1995).

    Google Scholar 

  36. K. Yan and E.M. van Veldhuizen, EUT Res. Rep. 93-E-272, ISBN-90-6144-272-9, Eindhoven Univ. of Technology, The Netherlands (1993), pp.1-72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, K., van Heesch, E.J.M., Pemen, A.J.M. et al. From Chemical Kinetics to Streamer Corona Reactor and Voltage Pulse Generator. Plasma Chemistry and Plasma Processing 21, 107–137 (2001). https://doi.org/10.1023/A:1007045529652

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007045529652

Navigation