Skip to main content
Log in

Hypo-Elasticity Model Based upon the Logarithmic Stress Rate

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Recently these authors have proved [46, 47] that a smooth spin tensor Ωlog can be found such that the stretching tensor D can be exactly written as an objective corotational rate of the Eulerian logarithmic strain measure ln V defined by this spin tensor, and furthermore that in all strain tensor measures only ln V enjoys this favourable property. This spin tensor is called the logarithmic spin and the objective corotational rate of an Eulerian tensor defined by it is called the logarithmic tensor-rate. In this paper, we propose and investigate a hypo-elasticity model based upon the objective corotational rate of the Kirchhoff stress defined by the spin Ωlog, i.e. the logarithmic stress rate. By virtue of the proposed model, we show that the simplest relationship between hypo-elasticity and elasticity can be established, and accordingly that Bernstein's integrability theorem relating hypo-elasticity to elasticity can be substantially simplified. In particular, we show that the simplest form of the proposed model, i.e. the hypo-elasticity model of grade zero, turns out to be integrable to deliver a linear isotropic relation between the Kirchhoff stress and the Eulerian logarithmic strain ln V, and moreover that this simplest model predicts the phenomenon of the known hypo-elastic yield at simple shear deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A.L. Cauchy, Sur l'équilibre et le mouvement intérieur des corps considérés comme des masses continues. Ex. de Math. 4 (1829) 293–319; Œuvres (2), 9, 342–369.

    Google Scholar 

  2. S. Zaremba, Sur une forme perfectionée de la théorie de la relaxation. Bull. Intl. Acad. Sci. Cracovie (1903) 594–614.

  3. G. Jaumann, Geschlossenes System physikalischer und chemischer Differenzialgesetze. Sitzber. Akad. Wiss. Wien (IIa) 120 (1911) 385–530.

    MATH  Google Scholar 

  4. H. Hencky, Über die Form des Elastizitätsgesetzes bei ideal elastischen Stoffen, Z. Techn. Phys. 9 (1928) 214–247.

    Google Scholar 

  5. J.G. Oldroyd, On the formulation of rheological equations of state. Proc. Roy. Soc. London A200 (1950) 523–541.

    MathSciNet  ADS  Google Scholar 

  6. B.A. Cotter and R.S. Rivlin Tensors associated with time-dependent stress. Quart. Appl. Math. 13 (1955) 177–182.

    MATH  MathSciNet  Google Scholar 

  7. C. Truesdell, The simplest rate theory of pure elasticity. Comm. Pure Appl. Math. 8 (1955a) 123–132.

    Article  MATH  MathSciNet  Google Scholar 

  8. C. Truesdell, Hypo-elasticity. J. Rat. Mech. Anal. 4 (1955a) 83–133, 1019–1020.

    MATH  MathSciNet  Google Scholar 

  9. C. Truesdell, Hypo-elastic shear. J. Appl. Phys. 27 (1956) 441–447.

    Article  MathSciNet  ADS  Google Scholar 

  10. C. Truesdell, Remarks on hypo-elasticity. J. Res. Nat. Bur. Stand. B67 (1963) 141–143.

    MathSciNet  Google Scholar 

  11. C. Truesdell and W. Noll, The classical field theories. In: S. Flügge (ed.), Handbuch der Physik, vol. III/1, Springer-Verlag, Berlin etc. (1960).

    Google Scholar 

  12. C. Truesdell and W. Noll, The non-linear field theories of mechanics. In: S. Flügge (ed.), Handbuch der Physik, vol. III/3, Springer-Verlag, Berlin etc. (1965).

    Google Scholar 

  13. W. Noll, On the continuity of the solid and fluid states. J. Rat. Mech. Anal. 4 (1955) 3–81.

    MATH  MathSciNet  Google Scholar 

  14. T.Y. Thomas, On the structure of the stress-strain relations. Proc. Natl. Acad. Sci. U. S. 41 (1955a) 716–720.

    Article  MATH  ADS  Google Scholar 

  15. T.Y. Thomas, Combined elastic and Prandtl-Reuss stress-strain relations. Proc. Natl. Acad. Sci. U. S. 41 (1955b) 720–726.

    Article  MATH  ADS  Google Scholar 

  16. T.Y. Thomas, Kinematically preferred coordinate systems. Proc. Natl. Acad. Sci. U. S. 41 (1955c) 762–770.

    Article  MATH  ADS  Google Scholar 

  17. T.Y. Thomas, Combined elastic and von Mises stress-strain relations. Proc. Natl. Acad. Sci. U. S. 41 (1955d) 908–910.

    Article  MATH  ADS  Google Scholar 

  18. T.Y. Thomas, Isotropic materials whose deformation and distortion energies are expressible by scalar invariants. Proc. Natl. Acad. Sci. U. S. 42 (1956) 603–608.

    Article  MATH  ADS  Google Scholar 

  19. T.Y. Thomas, Deformation energy and the stress-strain relations for isotropic materials. J. Math. Phys. 4 (1957) 335–350.

    Google Scholar 

  20. A.E. Green, Simple extension of hypo-elastic body of grade zero. J. Rat. Mech. Anal. 5 (1956a) 637–642.

    MATH  Google Scholar 

  21. A.E. Green, Hypo-elasticity and plasticity. Proc. Roy. Soc. London A234 (1956b) 46–59.

    ADS  Google Scholar 

  22. A.E. Green, Hypo-elasticity and plasticity. II, J. Rat. Mech. Anal. 5 (1956c) 725–734.

    MATH  Google Scholar 

  23. A.E. Green and B.C. Mcinnis, Generalized hypo-elasticity. Trans. Roy. Soc. Edinburgh 67 (1967) 220–230.

    MATH  MathSciNet  Google Scholar 

  24. J.E. Ericksen, Hypo-elastic potentials. Quart. J. Mech. Appl. Math. 11 (1958) 67–72.

    MathSciNet  Google Scholar 

  25. B. Bernstein and J.L. Ericksen, Work functions in hypo-elasticity. Arch. Rat. Mech. Anal. 1 (1958) 396–409.

    Article  MATH  MathSciNet  Google Scholar 

  26. B. Bernstein, Relation between hypo-elasticity and elasticity. Trans. Soc. Rheol. 4 (1960a) 23–28.

    Article  Google Scholar 

  27. B. Bernstein, Hypo-elasticity and elasticity, Arch. Rat. Mech. Anal. 6 (1960b) 90–104.

    Google Scholar 

  28. T. Tokuoka, Yield conditions and flow rules derived from hypo-elasticity. Arch. Rat. Mech. Anal. 42 (1971) 239–252.

    Article  MATH  MathSciNet  Google Scholar 

  29. T. Tokuoka, Fundamental relations of plasticity derived from hypo-elasticity. In: A. Sawczuk (ed.), Proceedings of the International Symposium on Foundations of Plasticity, Noordhoff Inter. Publishing, Leyden (1972).

    Google Scholar 

  30. T. Tokuoka, Thermo-hypo-elasticity and derived fracture and yield conditions. Arch. Rat. Mech. Anal. 46 (1973) 114–130.

    MathSciNet  Google Scholar 

  31. C.C. Wang and C. Truesdell, Introduction to rational elasticity. Noordhoff, Leyden (1973).

    MATH  Google Scholar 

  32. R. Hill, Aspects of invariance in solid mechanics. Advances in Applied Mechanics 18 (1978) 1–75.

    MATH  Google Scholar 

  33. J.K. Dienes, On the analysis of rotation and stress rate in deforming bodies. Acta Mechanica 32 (1979) 217–232.

    Article  MATH  MathSciNet  Google Scholar 

  34. J.K. Dienes, A discussion of material rotation and stress rate. Acta Mechanica 65 (1987) 1–11.

    Article  MATH  Google Scholar 

  35. J.E. Fitzjerald, A tensor Henchy measure of strain and strain rate for finite deformation. J. Appl. Phys. 51 (1980) 5111–5115.

    Article  ADS  Google Scholar 

  36. M.E. Gurtin, An introduction to continuum mechanics. Academic Press, New York (1982).

    MATH  Google Scholar 

  37. M.E. Gurtin, On the hypoelastic formulation of plasticity using the past maximum of stress. ASME J. Appl. Mech. 50 (1983) 894–896.

    Article  MATH  MathSciNet  Google Scholar 

  38. M.E. Gurtin and K. Spear, On the relationship between the logarithmic strain rate and the stretching tensor. Int. J. Solids Struct. 19 (1983) 437–444.

    Article  MATH  MathSciNet  Google Scholar 

  39. R.W. Ogden, Nonlinear elastic deformations. Ellis Horwood, Chichester (1984).

    MATH  Google Scholar 

  40. D.E. Carlson and A. Hoger, The derivative of a tensor-valued function of a tensor. Quart. Appl. Math. 44 (1986) 409–423.

    MATH  MathSciNet  Google Scholar 

  41. A. Hoger, The material time derivative of logarithmic strain tensor. Int. J. Solids. Struct. 22 (1986) 1019–1032.

    Article  MATH  MathSciNet  Google Scholar 

  42. R.N. Dubey, Choice of tensor-rates-a methodology. SM Archives 12 (1987) 233–244.

    MATH  MathSciNet  Google Scholar 

  43. J. Stickforth and K. Wegener, A note to Dienes' and Aifantis' co-rotational rates. Acta Mechanica 74 (1987) 227–234.

    Article  Google Scholar 

  44. Z. Xia and F. Ellyin, A stress rate measure for finite elastic plastic deformation. Acta Mechanica 98 (1993) 1–14.

    Article  MATH  Google Scholar 

  45. H. Xiao, Unified explicit basis-free expressions for time rate and conjugate stress of an arbitrary Hill's strain. Int. J. Solid Struct. 32 (1995) 3327–3340.

    Article  MATH  Google Scholar 

  46. H. Xiao, O.T. Bruhns and A. Meyers, Logarithmic strain, logarithmic spin and logarithmic rate. Acta Mechanica (1996a) (in the press).

  47. H. Xiao, O.T. Bruhns and A. Meyers, Strain rates and material spins. J. Elasticity (1996b) (to appear).

  48. Th. Lehmann, Z.H. Guo and H.Y. Liang, The conjugacy between Cauchy stress and logarithm of the left stretch tensor. Eur. J. Mech., A/Solids 10 (1991) 395–404.

    MATH  MathSciNet  Google Scholar 

  49. W.D. Reinhardt and R.N. Dubey, Coordinate-independent representation of spins in continuum mechanics. J. Elasticity 42 (1996) 133–144.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, H., Bruhns, O.T. & Meyers, A. Hypo-Elasticity Model Based upon the Logarithmic Stress Rate. Journal of Elasticity 47, 51–68 (1997). https://doi.org/10.1023/A:1007356925912

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007356925912

Navigation