Skip to main content
Log in

Towards a fracture mechanics for brittle piezoelectric and dielectric materials

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A theoretical fracture mechanics for brittle piezoelectric and dielectric materials is developed consistent with standard features of elasticity and dielectricity. The influence of electric field and mechanical loading is considered in this approach and a Griffith style energy balance is used to establish the relevant energy release rates. Results are given for a finite crack in an infinite isotropic dielectric and for steady state cracking in a piezoelectric strip. In the latter problem, the effect of charge separation in the material and discharge in the crack are considered. Observations of crack behavior in piezoelectrics under combined mechanical and electrical load are discussed to assess which features of the theory are useful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Budiansky, B., Hutchinson, J.W. and Evans, A.G. (1986). M atrix fracture in fiber-reinforced ceramics, Journal of the Mechanics and Physics of Solids 34, 167-189.

    Article  Google Scholar 

  • Cao, H.C. and Evans, A.G. (1994). Electric-field-induced fatigue crack growth in piezoelectrics, Journal of the American Ceramic Society 77, 1783-1786.

    Google Scholar 

  • Cherepanov, G.P. (1979). Mechanics of Brittle Fracture, McGraw-Hill, New York p.98.

  • Deeg, W.F.J. (1980). The Analysis of Dislocation, Crack and Inclusion Problems in Piezoelectric Solids, Ph.D. Thesis, Stanford University.

  • Dugdale, D.S. (1960). Yielding of steel sheets containing slits, Journal of the Mechanics and Physics of Solids 8, 100-104.

    Article  Google Scholar 

  • Dunn, M.L. (1994). Electroelastic Green's functions for transversely isotropic piezoelectric media and their application to the solution of inclusion and inhomogeneity problems, International Journal of Engineering Science 32, 119-131.

    Article  Google Scholar 

  • Eringen, A.C. and Maugin, G.A. (1990). Electrodynamics of Continua I: Foundations and Solid Media, Springer.

  • Eshelby, J.D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proceedings of the Royal Society of London A241, 376-396.

    Google Scholar 

  • Fulton, C.C. and Gao, H. (1997). Electrical nonlinearity in fracture of piezoelectric ceramics, Applied Mechanics Reviews 50, 1-8.

    Google Scholar 

  • Gao, H. and Barnett, D.M. (1996). An invariance property of local energy release rate in a strip saturation model of piezoelectric fracture, International Journal of Fracture 79, R25-R29.

    Article  Google Scholar 

  • Gao, H., Zhang, T.-Y. and Tong, P. (1997). Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic, Journal of the Mechanics and Physics of Solids 45, 491-510.

    Article  Google Scholar 

  • Griffith, A.A. (1920). The phenomena of rupture and flow in solids, Philosophical Transactions of the Royal Society of London A221, 163-197.

    Google Scholar 

  • Jaffe, B., Cook W.R. and Jaffe, H. (1971). Piezoelectric Ceramics, Academic Press, London and New York.

    Google Scholar 

  • Kim, K.-S., McMeeking, R.M. and Johnson, K.L. (1998). Adhesion, slip, cohesive zones and energy fluxes for elastic spheres in contact, Journal of the Mechanics and Physics of Solids 46, 243-266.

    Article  Google Scholar 

  • Landau, L.D. and Lifshitz, E.M. (1960). Electrodynamic of Continuous Media, Pergamon Press, Oxford.

    Google Scholar 

  • Lynch, C.S., Yang, W., Collier, L., Suo, Z. and McMeeking, R.M. (1995). Electric field induced cracking in ferroelectric ceramics, Ferroelectrics 166, 11-30.

    Google Scholar 

  • Marshall, D.B., Cox, B.N. and Evans, A.G. (1985). The mechanics of matrix cracking in brittle-matrix fiber composites, Acta Metallurgica 33, 2013.

    Article  Google Scholar 

  • McClintock, F.A. and Argon, A.S. (1966). Mechanical Behavior of Materials, Addison-Wesley, Reading, Massachussettes.

    Google Scholar 

  • McHenry K.D. and Koepke, B.G. (1983). Electric field effects on subcritical crack growth in PZT, Fracture Mechanics of Ceramics 5, 337-352.

    Google Scholar 

  • McMeeking, R.M. (1989). Electrostrictive stresses near crack like flaws, Journal of Applied Mathematics and Physics (ZAMP) 40, 615-627.

    Google Scholar 

  • McMeeking R.M. and Hwang, S.C. (1997). On the potential energy of a piezoelectric inclusion and the criterion for ferroelectric switching, Ferroelectrics 200, p. 151.

    Google Scholar 

  • Pak, Y.E. (1992). Linear electro-elastic fracture mechanics of piezoelectric materials, International Journal of Fracture 54, 79-100.

    Google Scholar 

  • Pak, Y.E. and Herrmann, G. (1986). Crack extension force in a dielectric medium, International Journal of Engineering Science 24, 1365-1374.

    Article  Google Scholar 

  • Pak, Y.E. and Tobin, A. (1993). O n electric field effects in fracture of piezoelectric materials, in Mechanics of Electromagnetic Materials and Structures AMD vol. 161/MD vol. 42, ASME.

  • Pao, Y.-H. (1978). Electromagnetic forces in deformable continua Mechanics Today 4, 209-303.

    Google Scholar 

  • Park, S.B. and Sun, C.T. (1995a). Effect of electric field on fracture of piezoelectric ceramics, International Journal of Fracture 70, 203-216.

    Google Scholar 

  • Park, S.B. and Sun, C.T. (1995b). Fracture criteria for piezoelectric ceramics, Journal of the American Ceramic Society 78, 1475-1480.

    Google Scholar 

  • Parton, V.Z., (1976). A fracture mechanics of piezoelectric materials, Acta Astronautica 3, 671-683.

    Article  Google Scholar 

  • Parton V.Z. and Kudryavtsev, B.A. (1988). Electromagnetoelasticity, Gordon and Breach Science Publishers, New York.

    Google Scholar 

  • Pohanka, R.C. and Smith, P.L. (1988). Electronic Ceramics, Marcel Dekker, New York.

    Google Scholar 

  • Rice, J.R. (1968). A path independent integral and the approximate analysis of strain concentration by notches and cracks, Journal of Applied Mechanics 35, 379-386.

    Google Scholar 

  • Schneider, G.A. and Heyer, V. (1999). Influence of the electric field on Vickers indentation crack growth in BaTiO3, Journal of the European Ceramic Society 19, 1299-1306.

    Article  Google Scholar 

  • Smith, T.E. and Warren, W.E. (1996). Some problems in two-dimensional electrostriction, Journal of Mathematical Physics, 45 45-51; corrigenda 47, 109-110.

    Google Scholar 

  • Sosa, H.A. (1991). Plane problems in piezoelectric media with defects, International Journal of Solids and Structures 28, 491-505.

    Article  Google Scholar 

  • Sosa, H.A. (1992). On the fracturemechanics of piezoelectric solids, International Journal of Solids and Structures 29, 2613-2622.

    Article  Google Scholar 

  • Sosa, H.A. and Pak, Y.E. (1990). Three-dimensional eigenfunction analysis of a crack in a piezoe lectric material, International Journal of Solids and Structures 26, 1-15.

    Article  Google Scholar 

  • Suo, Z., Kuo, C.-M., Barnett, D.M. and Willis, J.R. (1992). Fracture mechanics for piezoelectric solids, Journal of the Mechanics and Physics of Solids 40, 739-765.

    Article  Google Scholar 

  • Tada, H., Paris, P.C. and Irwin, G.R. (1985). The Stress Analysis of Cracks Handbook, Paris Productions Inc., St. Louis, MO.

    Google Scholar 

  • Timoshenko, S.P. and Goodier, J.N. (1970). Theory of Elasticity, 3rd ed., McGraw-Hill, New York p.193.

  • Tobin, A.G. and Pak, Y.E. (1993). Effect of electric fields on fracture behavior of PZT ceramics, in SmartMaterials (Edited by V.K. Vardan) Proc. SPIE 1916, 76-86.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McMeeking, R.M. Towards a fracture mechanics for brittle piezoelectric and dielectric materials. International Journal of Fracture 108, 25–41 (2001). https://doi.org/10.1023/A:1007652001977

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007652001977

Navigation