Skip to main content
Log in

A micromechanical model for a viscoelastic cohesive zone

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A micromechanical model for a viscoelastic cohesive zone is formulated herein. Care has been taken in the construction of a physically-based continuum mechanics model of the damaged region ahead of the crack tip. The homogenization of the cohesive forces encountered in this region results in a damage dependent traction-displacement law which is both single integral and internal variable-type. An incrementalized form of this traction-displacement law has been integrated numerically and placed within an implicit finite element program designed to predict crack propagation in viscoelastic media. This research concludes with several example problems on the response of this model for various displacement boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Griffith, A.A. (1920). The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London A221, 163-197.

    Google Scholar 

  2. Paris, P.C. (1962). The Growth of Cracks Due to the Variations in Loads, Ph.D. Dissertation, Lehigh University, Bethlehem, Pa.

    Google Scholar 

  3. Paris, P.C. and Erdogan, F. (1963). A critical analysis of crack propagation laws. Journal of Basic Engineering 85, 528-534.

    Google Scholar 

  4. Frost, N.E. and Dixon, J.R. (1967). A theory of fatigue crack growth. International Journal of Fracture Mechanics 3(4), 301-316.

    Google Scholar 

  5. McClintock, F.A. (1963). on the plasticity of the growth of fatigue cracks. Fracture of Solids (Edited by D.C. Drucker and J.J. Gilman), Gordon and Breach, New York, 65-102.

    Google Scholar 

  6. Rice, J.R. (1967). Mechanics of crack tip deformation and extension by fatigue. Fatigue Crack Propagation, ASTM STP 415, philadelphia, 247-309.

    Google Scholar 

  7. J.S. Short and Hoeppner, D.W. (1990). R-curve thermodynamics revisited. International Journal of Fracture 45(2) 145-157.

    Google Scholar 

  8. Dugdale, D.S. (1960). Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids 8, 100-104.

    Google Scholar 

  9. Barenblatt, G.I. (1962). The mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics 7, 55-129.

    Google Scholar 

  10. Knauss, W.G. (1973). On the steady propagation of a crack a viscoelastic sheet: experiments and analys. In: Deformation and Fracture of High Polymer (Edited by H.H. Kausch, J.A. Hassell and R.I. Jaffee), Plenum Press, New York, 501-541.

    Google Scholar 

  11. Schapery, R.A. (1975). A theory of crack initiation and growth in viscoelastic media; Part I. International Journal of fracture 11(1), 141-159.

    Google Scholar 

  12. Schapery, R.A. (1975). A theory of crack initiation and growth in viscoelastic media: Part II. International Journal of Fracture 11(3), 369-387.

    Google Scholar 

  13. Schapery, R.A. (1975). A theory of crack initiation and growth in viscoelastic Media: Part III. International Journal of Fracture 11(4), 549-562.

    Google Scholar 

  14. Ungsuwarungsri, T. and Knauss, W.G. (1988). A nonlinear analysis of an equilibrium craze: Part I - problem formulation and solution. Journal of Applied Mechanics 55; 44-51.

    Google Scholar 

  15. Ungsuwarungsri, T. and Knauss, W.G. (1988). A nonlinear analysis of an equilibrium craze Part II - Simulations of craze and crack growth. Journal of Applied Mechanics 55, 52-58.

    Google Scholar 

  16. Needleman, A. (1987). A continuum model for void nucleation by inclusion debonding. Journal of Applied Mechanics 54, 525-531.

    Google Scholar 

  17. Tvergaard, V. (1990). Effect of fibre debonding in a whisker-reinforced metal. Materials Science & Engineering A: Structural Materials: Properties, Microstructure, and Processing A125(2), 203-213.

    Google Scholar 

  18. Tvergaard, V. and Hutchinson, J.W. (1993). The influence of plasticity on mixed mode interface toughness. Journal of the Mechanics and Physics of Solids 44, 1119-1135.

    Google Scholar 

  19. Allen, D.H., Jones, R.H. and Boyd, J.G. (1994). Micromechanical analysis of a continuous fiber metal matrix composite including the effects of matrix viscoplasticity and evolving damage. Journal of the Mechanics and Physics of Solids 42(3), 505-529.

    Google Scholar 

  20. Allen, D.H., Lo, D.C. and Zocher, M.A. Modelling of damage evolution in laminated viscoelastic composites. International Journal of Damage Mechanics 6, 5-22.

  21. Yang, B. and Ravi-Chandar, K. (1996). On the role of the process zone in dynamic fracture. Journal of the Mechanics and Physics of Solid 45 (4): 535-63.

    Google Scholar 

  22. Knauss, W.G. and Losi, G.U. (1993). Crack propagation in a nonlinearly viscoelastic solid with relevance to adhesive bond failure. Journal of Applied Mechanics 60, 793-801.

    Google Scholar 

  23. Costanzo, F. and Allen, D.H. (1994). A continuum mechanics approach to some problems in fubritical crack propagation. international Journal of Fracture 63, 27-57.

    Google Scholar 

  24. Kramer, E.J. and Berger, L.L. (1990). Fundamental processes of craze growth and fracture. In: Advances in Polymer Science 91/92: crazing in Polymers (Edited by H.-H. Kausch), Vol.2, Springer-Verlag, Berlin, 1-68.

    Google Scholar 

  25. Schapery, R.A. (1974). Viscoelastic behavior and analysis of composite materials. In: Mechanics of Composite Materials (Edited by G.P. Sendeckj), Academic ress, New York, 85-168.

    Google Scholar 

  26. Rahul-Kumar, P., Jagota, A., Bennison, S.J., Saigal, S. and Muralidhar, S. (1999). Polymer interfacial fracture simulations using cohesive elements. Acta Mater. 47(15), 4161-4169.

    Google Scholar 

  27. Knauss, W.G. and Losi, G.U. (1993). Crack propagation in a nonlineary viscoelastic solid with relevance to adhesive bond failure. Journal Applied Mechanics 60, 793-801.

    Google Scholar 

  28. Xu, D.-B., Hui, C.-Y., Kramer, E.J. and Creton, C. (1991). A micromechanical model of crack growth along polymer interfaces. Mechanics of Materials 11, 257-268.

    Google Scholar 

  29. Kachanov, L.M. (1958). On the creep fracture time. Izv. Acad. Nauk SSSR Otd. Tekhn. 8, 26-31.

    Google Scholar 

  30. Rabotnov, Y.N. (1969). Creep Problems in Structural Members, North-Holland, London.

  31. Zocher, M.A., Allen, D.H. and Groves, S.E. (1997). A three-dimensional finite element formulation for thermoviscoelastic orthotropic media. International Journal of Numerical Methods in Engineering 40, 2267-2288.

    Google Scholar 

  32. Allen, D.H. and Searcy, C.R. (2000). Numerical aspects of a micromechanical model of a cohesive zone. Journal of Reinforced Plastics and Composites 19(3), 240-248.

    Google Scholar 

  33. AlIen, D.H., Jones, R.H. and Boyd, J.G. (1994).Micromechanical analysis of a continuous fiber metal matrix composite including the effects of matrix viscoelasticity and evolving damage. Journal of the Mechanics and Physics of Solids 42, (3), 505-529.

    Google Scholar 

  34. Foulk, J.W., Allen, D.H., and Helms, K.L.E. (2000). Formulation of a three-dimensional cohesive zone model for the application to a finite element algorithm. Computational Methods in Applied Mechanics and Engineering 183, 51-66.

    Google Scholar 

  35. Yoon, C. and Allen, D.H. (1999). Damage dependent constitutive behavior and energy release rate for a cohesive zone in a thermoviscoelastic solid. International Journal of Fracture 96, 56-74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allen, D.H., Searcy, C.R. A micromechanical model for a viscoelastic cohesive zone. International Journal of Fracture 107, 159–176 (2001). https://doi.org/10.1023/A:1007693116116

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007693116116

Navigation