Skip to main content
Log in

FINSLERIAN QUANTUM FIELDS AND MICROCAUSALITY

  • Published:
Foundations of Physics Letters

Abstract

Microcausality is addressed for a class of Finslerian quantum fields in Minkowski spacetime by the calculation of the appropriate field commutators. It is demonstrated that, provided the adjoint field is consistently generalized, the necessary commutators are vanishing, and the field is microcausal. There are, however, Planck-scale modifications of the causal domain, but they only become significant for extremely large relative four-velocities at the separated spacetime points. For vanishing relative four-velocities, the causal domain is canonical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. E. Brandt, “Quantum fields in the spacetime tangent bundle,” Found. Phys. Lett. 11, 265-275 (1998).

    Article  MathSciNet  Google Scholar 

  2. H. E. Brandt, “Finslerian fields in the spacetime tangent bundle,” Chaos, Solitons & Fractals 10, 267-282 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. H. E. Brandt, “Finslerian fields,” in Finslerian Geometries, P. L. Antonelli, ed. (Kluwer Academic, Dordrecht, 2000), pp. 131-138.

    Chapter  Google Scholar 

  4. H. E. Brandt, “Particle geodesics and spectra in the spacetime tangent bundle,” Reports Math. Phys. 45, 389-405 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. H. E. Brandt, “Finslerian spacetime,” Contemporary Math. 196, 273-287 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  6. H. E. Brandt, “Structure of spacetime tangent bundle,” Found. Phys. Lett. 4, 523-536 (1991).

    Article  MathSciNet  Google Scholar 

  7. H. E. Brandt, “Maximal proper acceleration and the structure of spacetime,” Found. Phys. Lett. 2, 39-58, 405 (1989).

    Article  Google Scholar 

  8. H. E. Brandt, “Riemann curvature scalar of spacetime tangent bundle,” Found. Phys. Lett. 5, 43-55 (1992).

    Article  MathSciNet  Google Scholar 

  9. H. E. Brandt, “Maximal proper acceleration relative to the vacuum,” Lett. Nuovo Cimento 38, 522-524 (1983); 39, 192 (1984).

    Article  Google Scholar 

  10. S. Weinberg, The Quantum Theory of Fields, Volume I, Foundations (Cambridge University Press, Cambridge, 1995).

    Book  Google Scholar 

  11. G. Kaiser, Quantum Physics, Relativity, and Complex Spacetime, Towards a New Synthesis (North-Holland, New York, 1990).

    MATH  Google Scholar 

  12. G. Kaiser, “Quantized fields in complex spacetime,” Ann. Phys. 173, 338-354 (1987).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. E. Prugovecki, Stochastic Quantum Mechanics in Quantum Spacetime (Reidel, Dordrecht, 1986).

    MATH  Google Scholar 

  14. E. Prugovecki, Quantum Geometry: A Framework for Quantum General Relativity (Kluwer Academic, Dordrecht, 1992).

    Book  MATH  Google Scholar 

  15. W. Greiner and J. Reinhardt, Field Quantization (Springer, Berlin, 1996).

    Book  MATH  Google Scholar 

  16. R. F. Streater and A. S. Wightman, PCT, Spin and Statistics, and All That (Addison-Wesley, Redwood City, California, 1989).

    MATH  Google Scholar 

  17. K. Huang, Quantum Field Theory: From Operators to Path Integrals (Wiley-Interscience, New York, 1998).

    Book  MATH  Google Scholar 

  18. L. S. Brown, Quantum Field Theory (Cambridge University Press, Cambridge, 1992).

    Book  Google Scholar 

  19. D. I. Blokhintsev, Space and Time in the Microworld (Reidel, Dordrecht, 1973).

    Book  MATH  Google Scholar 

  20. N. N. Bogolubov, A. A. Logunov, A. I. Oksak, and I. T. Todorov, General Principles of Quantum Field Theory (Kluwer Academic, Dordrecht, 1990).

    Book  MATH  Google Scholar 

  21. S. S. Schweber, An Introduction to Relativistic Quantum Field Theory (Row, Peterson and Company, Evanston, Illinois, 1961).

    MATH  Google Scholar 

  22. N. N. Bogolubov, A. A. Logunov, and I. T. Todorov, Introduction to Axiomatic Quantum Field Theory (Benjamin, Reading, Massachusetts, 1975).

    Google Scholar 

  23. J. D. Bjorken, and S. D. Drell, Relativistic Quantum Fields (McGraw-Hill, New York, 1965).

    MATH  Google Scholar 

  24. W. Pauli, “The connection between spin and statistics,” Phys. Rev. 58, 716-722 (1940).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. I. Duck and E.C.G. Sudarshan, Pauli and the Spin-Statistics Theorem (World Scientific, Singapore, 1997).

    MATH  Google Scholar 

  26. N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields, third edn. (Wiley-Interscience, New York, 1980), pp. 603-606.

    Google Scholar 

  27. C. Møller, The Theory of Relativity, 2nd edn. (Clarendon, Oxford, 1972), p. 40.

    Google Scholar 

  28. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of Integral Transforms, Vol.1 (McGraw-Hill, New York, 1954), p. 75.

    MATH  Google Scholar 

  29. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (National Bureau of Standards, Washington DC, 1972), p. 374.

    MATH  Google Scholar 

  30. E.C.G. Stückelberg, “La Mécanique du point matériel en théorie de relativité et en théorie des quanta,” Helv. Phys. Acta 15, 23-37 (1942).

    ADS  MATH  Google Scholar 

  31. R. P. Feynman, “A relativistic cut-off for classical electrodynamics,” Phys. Rev 74, 939-946 (1948).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. R. P. Feynman, “The theory of positrons,” Phys. Rev. 76, 749-759 (1949).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. G. Barton, Introduction to Advanced Field Theory (Wiley-Interscience, New York, 1963).

    MATH  Google Scholar 

  34. K. Gottfried and V. F. Weisskopf, Concepts of Particle Physics, Vol. II (Oxford University Press, Oxford, 1986), pp. 577-586.

    Google Scholar 

  35. T. Y. Cao, ed., Conceptual Foundations of Quantum Field Theory (Cambridge University Press, Cambridge, 1999), pp. 377-378.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandt, H.E. FINSLERIAN QUANTUM FIELDS AND MICROCAUSALITY. Found Phys Lett 13, 307–328 (2000). https://doi.org/10.1023/A:1007871326346

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007871326346

Navigation