Skip to main content
Log in

The Structure of Locally Orderless Images

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

We propose a representation of images in which a global, but not a local topology is defined. The topology is restricted to resolutions up to the extent of the local region of interest (ROI). Although the ROI's may contain many pixels, there is no spatial order on the pixels within the ROI, the only information preserved is the histogram of pixel values within the ROI's. This can be considered as an extreme case of a textel (texture element) image: The histogram is the limit of texture where the spatial order has been completely disregarded. We argue that locally orderless images are ubiquitous in perception and the visual arts. Formally, the orderless images are most aptly described by three mutually intertwined scale spaces. The scale parameters correspond to the pixellation (“inner scale”), the extent of the ROI's (“outer scale”) and the resolution in the histogram (“tonal scale”). We describe how to construct locally orderless images, how to render them, and how to use them in a variety of local and global image processing operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Florack, L. M. J. 1997. Image Structure. Dordrecht: Kluwer.

    Google Scholar 

  • Griffin, L. D. 1997. Scale–imprecision space. Image and Vision Computing, 15: 369–398.

    Google Scholar 

  • Helmholtz, H. 1866. Handbuch der physiologischen Optik. Hamburg and Leipzig: Voss.

    Google Scholar 

  • Hess, R. 1982. Developmental sensory impairment: Amblyopia or tarachopia? Human Neurobiology, 1: 17–29.

    Google Scholar 

  • Homer, W. I. 1964. Seurat and the science of painting. Cambridge, Mass.: The M.I.T. Press.

    Google Scholar 

  • Koenderink, J. J. and van Doorn, A. J. 1978. Invariant features of contrast detection: An explanation in terms of self–similar detector arrays. Biological Cybernetics, 30: 157–167.

    Google Scholar 

  • Koenderink, J. J. 1984. The structure of images. Biological Cybernetics, 50: 363–370.

    Article  Google Scholar 

  • Koenderink, J. J. and van Doorn, A. J. 1992. Generic neighborhood operators. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14: 597–605.

    Google Scholar 

  • Lindeberg, T. 1994. Scale–space theory in computer vision. Boston, Mass.: Kluwer.

    Google Scholar 

  • Metzger, W. 1975. Gesetze des Sehens. Frankfurt a.M.: Verlag Waldemar Kramer.

    Google Scholar 

  • Noest, A. J. and Koenderink, J. J. 1990. Visual coherence despite transparency or partial occlusion. Perception, 19: 384.

    Google Scholar 

  • Parzen, E. 1962. On estimation of a probability density function and mode. Annual Mathematical Statistics, 33: 1065–1076.

    Google Scholar 

  • Ruskin, J. 1900. Elements of drawing (first ed. 1857). Sunnyside, Orpington: George Allen.

    Google Scholar 

  • Ruskin, J. 1873. Modern Painters (Vol. I). Boston: Dana Estes & Company.

    Google Scholar 

  • Ulichney, R. A. 1987. Digital halftoning. Cambridge, Mass.: The M.I.T. Press.

    Google Scholar 

  • Ulichney, R. A. 1988. Dithering with blue noise. Proc. IEEE, 76: 56–79.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koenderink, J.J., Van Doorn, A.J. The Structure of Locally Orderless Images. International Journal of Computer Vision 31, 159–168 (1999). https://doi.org/10.1023/A:1008065931878

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008065931878

Navigation