Skip to main content
Log in

Stable isotope (δ13C and δ15N) signatures of sedimented organic matter as indicators of historic lake trophic state

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

We explored the use of carbon and nitrogen isotopes (δ13C and δ15N) in sedimented organic matter (OM) as proxy indicators of trophic state change in Florida lakes. Stable isotope data from four 210Pb-dated sediment cores were compared stratigraphically with established proxies for historical trophic state (diatom-inferred limnetic total phosphorus, sediment C/N ratio) and indicators of cultural disturbance (sediment total P and 226Ra activity). Diatom-based limnetic total P inferences indicate a transition from oligo-mesotrophy to meso-eutrophy in Clear Lake, and from eutrophy to hypereutrophy in Lakes Parker, Hollingsworth and Griffin. In cores from all four lakes, the carbon isotopic signature of accumulated OM generally tracks trophic state inferences and cultural impact assessments based on other variables. Oldest sediments in the records yield lower diatom-inferred total limnetic P concentrations and display relatively low δ13C values. In the Clear, Hollingsworth and Parker records, diatom-inferred nutrient concentrations increase after ca. AD 1900, and are associated stratigraphically with higher δ13C values in sediment OM. In the Lake Griffin core, both proxies display slight increases before ~1900, but highest values occur over the last ~100 years. As Lakes Clear, Hollingsworth and Parker became increasingly nutrient-enriched over the past century, the δ15N of sedimented organic matter decreased. This reflects, in part, the increasing relative contribution of nitrogen-fixing cyanobacteria to sedimented organic matter as primary productivity increased in these waterbodies. The Lake Griffin core displays a narrow range of both δ13C and δ15N values. Despite the complexity of carbon and nitrogen cycles in lakes, stratigraphic agreement between diatom-inferred changes in limnetic total P and the stable isotope signatures of sedimented OM suggests that δ13C and δ15N reflect shifts in historic lake trophic state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appleby, P. G. & F. Oldfield, 1983. The assessment of 210Pb data from sites with varying sediment accumulation rates. Hydrobiologia 103: 29–35.

    Google Scholar 

  • Agustí, S., C. M. Duarte & D. E. Canfield, Jr., 1990. Phytoplankton abundance in Florida lakes: evidence for the frequent lack of nutrient limitation. Limnol. Oceanogr. 35: 181–188.

    Google Scholar 

  • Binford, M. W. & M. Brenner, 1986. Dilution of 210Pb by organic sedimentation in lakes of different trophic states, and application to studies of sediment-water interactions. Limnol. Oceanogr. 31: 584–595.

    Google Scholar 

  • Boutton, T. W., 1991. Stable carbon isotope ratios of natural materials: II. Atmospheric, terrestrial, marine, and freshwater environments. In: D. C. Coleman & B. Fry (eds) Carbon Isotope Techniques. Academic Press Inc., New York: 173–185.

    Google Scholar 

  • Bremner, J. M. & C. S. Mulvaney, 1982. Nitrogen–Total. In: A. L. Page (ed) Methods of Soil Analysis, Part 2, 2nd edition: Chemical and Microbiological Properties. ASA, SSSA. Madison, WI: 595–624.

    Google Scholar 

  • Brenner M. & M. W. Binford, 1988. Relationships between concentrations of sedimentary variables and trophic state in Florida lakes. Can. J. Fish. Aquat. Sci. 45: 294–300.

    Google Scholar 

  • Brenner, M., T. J. Whitmore, M. S. Flannery & M. W. Binford, 1993. Paleolimnological methods for defining target conditions in lake restoration: Florida case studies. Lake and Reserv. Manage. 7: 209–217.

    Google Scholar 

  • Brenner, M., A. J. Peplow & C. L. Schelske, 1994. Disequilibrium between 226Ra and supported 210Pb in a sediment core from a shallow Florida lake. Limnol. Oceanogr. 39: 1222–1227.

    Google Scholar 

  • Brenner, M., T. J. Whitmore, J. H. Curtis & C. L. Schelske, 1995. Historical ecology of a hypereutrophic Florida lake. Lake and Reserv. Manage. 11: 255–271.

    Google Scholar 

  • Brenner, M., T. J. Whitmore & C. L. Schelske, 1996. Paleolimnological evaluation of historical trophic state conditions in hypereutrophic Lake Thonotosassa, Florida, USA. Hydrobiologia 331: 143–152.

    Google Scholar 

  • Brenner, M., C. L. Schelske & T. J. Whitmore, 1997. Radium-226 stratigraphy in Florida lake sediments as an indicator of human disturbance. Verh. Internat. Verein. Limnol. 26: 809–813.

    Google Scholar 

  • Brooks, H. K., 1981. Guide to the physiographic divisions of Florida. Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL.

    Google Scholar 

  • Bush, P. W., 1974. Hydrology of the Oklawaha Lakes Area of Florida. U.S. Geol. Survey Map Ser. No. 69.

  • Canfield, D. E., Jr., 1981. Chemical and trophic state characteristics of Florida lakes in relation to regional geology. Final report to Cooperative Fish and Wildlife Research Unit, Univ. of Florida, Gainesville, FL.

  • Canfield, D. E., Jr. & M. V. Hoyer, 1992. Aquatic macrophytes and their relation to the limnology of Florida lakes. Final report submitted to the Bureau of Aquatic Plant Management, Florida Department of Natural Resources, Tallahassee, Florida.

  • Canfield, D. E., Jr., K. A. Langeland, M. J. Maceina, W. T. Haller & J. V. Shireman, 1983. Trophic classification of lakes with aquatic macrophytes. Can. J. Fish. Aquat. Sci. 40: 1713–1718.

    Google Scholar 

  • Carlson, R. E., 1977. A trophic state index for lakes. Limnol. Oceanogr. 22: 361–369.

    Google Scholar 

  • Carrick, H. J., F. J. Aldridge & C. L. Schelske, 1993. Wind influences phytoplankton biomass and composition in a shallow, productive lake. Limnol. Oceanogr. 38: 1179–1192.

    Google Scholar 

  • Danek, L. J., T. A. Barnard & M. S. Tomlinson, 1991. Bathymetric and sediment thickness analysis of seven lakes in the Upper Oklawaha River Basin. Special Publication SJ 91-SP14, St. Johns River Water Mangement District, Palatka, FL.

  • Duarte, C. M., S. Agustí & D. E. Canfield, Jr., 1992. Patterns in phytoplankton community structure in Florida lakes. Limnol. Oceanogr. 37: 155–161.

    Google Scholar 

  • Eakins, J. D. & R. T. Morrison, 1978. A new procedure for the determination of lead-210 in lake and marine sediments. Int. J. Appl. Radiat. Isotopes. 29: 531–536.

    Google Scholar 

  • Fisher, M. M., M. Brenner & K. R. Reddy, 1992. A simple, inexpensive piston corer for collecting undisturbed sediment/ water interface profiles. J. Paleolim. 7: 157–161.

    Google Scholar 

  • Flannery, M. S., R. D. Snodgrass & T. J. Whitmore, 1982. Deepwater sediments and trophic conditions in Florida lakes. Hydrobiologia 92: 597–602.

    Google Scholar 

  • Florida Lakewatch, 1996. Florida Lakewatch Data 1986–1996. Department of Fisheries and Aquatic Sciences, Univ. of Florida, Gainesville.

    Google Scholar 

  • Fogel, M. L., L. A. Cifuentes, D. J. Velinsky & J. H. Sharp, 1992. Relationship of carbon availability in estuarine phytoplankton to isotopic composition. Mar. Ecol. Prog. Ser. 82: 291–300.

    Google Scholar 

  • Fulton, R. S., III, 1995. External nutrient budget and trophic state modeling for lakes in the upper Ocklawaha River Basin. Technical Publication SJ95–6, St. Johns River Water Management District, Palatka, FL.

    Google Scholar 

  • Goericke, R., J. P. Montoya & B. Fry, 1994. Physiology of isotopic fractionation in algae and cyanobacteria. In: K. Lajtha & R. H. Michener (eds) Stable isotopes in Ecology and Environmental Science. Blackwell Scientific Publications, Boston: 187–221.

    Google Scholar 

  • Gu, B. & C. L. Schelske, 1996. Temporal and spatial variations in phytoplankton carbon isotopes in a polymictic subtropical lake. J. Plankton Res. 18: 2081–2092.

    Google Scholar 

  • Gu, B., C. L. Schelske & M. Brenner, 1996. Relationships between sediment and plankton isotope ratios (d13C and d15N) and primary productivity in Florida lakes. Can. J. Fish. Aquat. Sci. 53: 875–883.

    Google Scholar 

  • Håkanson, L. & M. Jansson, 1983. Principles of lake sedimentology. Springer-Verlag, New York. 316 pp.

    Google Scholar 

  • Hodell, D. A. & C. L. Schelske, 1998. Production, sedimentation, and isotopic composition of organic matter in Lake Ontario. Limnol. Oceanogr. 43: 200–214.

    Google Scholar 

  • Hoyer, M. V., B. Gu & C. L. Schelske, 1997. Sources of organic carbon in food webs of two Florida lakes indicated by stable isotopes. In: E. Jeppesen, Ma. Søndergaard, Mo. Søndergaard & K. Christoffersen (eds) The Role of Macrophytes in Structuring the Biological Community and Biogeochemical Dynamics in Lakes. Springer-Verlag, New York: 326–330.

    Google Scholar 

  • Huber, W. C., P. L. Brezonik, J. P. Heaney, R. E. Dickinson, S. D. Preston., D. S. Dwornik & M. A. DeMaio, 1982. A classification of Florida lakes. Report ENV-05-82-1 to the Florida Department of Environmental Regulation, Tallahassee, FL.

  • Huffman, E. W. D., Jr., 1977. Performance of a new automatic carbon dioxide analyzer. Microchem. J. 22: 567–573.

    Google Scholar 

  • Hustedt, F., 1930–1966. Die Kieselalgen Deutschlands, Österreichs und der Schweiz. In: Dr. L. Rabenhorst's Kryptogamen Flora von Deutschlands, Österreichs und der Schweiz. Band 7. Teil 1–3.

  • Leslie, A. J., Jr., L. E. Nall & J. M. Van Dyke, 1983. Effects of vegetation control by grass carp on selected water quality variables in four Florida lakes. Trans. Am. Fish. Soc. 112: 777–787.

    Google Scholar 

  • McKenzie, J. A., 1985. Carbon isotopes and productivity in the lacustrine and marine environment. In: W. Stumm (ed) Chemical Processes in Lakes. Wiley, New York: 99–118.

    Google Scholar 

  • Oldfield, F. & P. G. Appleby, 1984. Empirical testing of 210Pb-dating models for lake sediments. In: E. Y. Haworth & J. W. G. Lund (eds) Lake Sediments and Environmental History. U. Minn. Press, Minneapolis: 93–124.

    Google Scholar 

  • Peterson, B. J. & B. Fry, 1987. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst. 18: 293–320.

    Google Scholar 

  • Patrick, R. & C. W. Reimer, 1966–1975. The Diatoms of the United States. Monogr. Acad. Sci. Phila., No. 13, Part 1, v. 1–2.

  • Schelske, C. L., A. Peplow, M. Brenner & C. N. Spencer, 1994. Low-background gamma counting: applications for 210Pb dating of sediments. J. Paleolim. 10: 115–128.

    Google Scholar 

  • Schelske, C. L., D. J. Conley, E. F. Stoermer, T. L. Newberry & C. D. Campbell, 1986. Biogenic silica and phosphorus accumulation in sediments as indices of eutrophication in the Laurentian Great Lakes. Hydrobiologia 143: 79–86.

    Google Scholar 

  • Shannon, E. E. & P. L. Brezonik, 1972. Limnological characteristics of north and central Florida lakes. Limnol. Oceanogr. 17: 97–110.

    Google Scholar 

  • Stewart, H. G., 1966. Groundwater resources in Polk County, Florida. Florida Geol. Surv. Rep. Investigation 44. Florida Dep. Nat. Resour. Bur. Geol., Tallahassee.

  • Stiller, M. & M. Magaritz, 1974. Carbon-13 enriched carbonate in interstitial waters of Lake Kinneret sediments. Limnol. Oceanogr. 19: 849–853.

    Google Scholar 

  • Van der Werff, A., 1955. A new method of concentrating and cleaning diatoms and other organisms. Int. Ver. Theor. Angew. Limnol. Verh. 12: 276–277.

    Google Scholar 

  • Whitmore, T. J., 1989. Florida diatom assemblages as indicators of trophic state and pH. Limnol. Oceanogr. 34: 882–895.

    Google Scholar 

  • Whitmore, T. J., M. Brenner & C. L. Schelske, 1996. Highly variable sediment distribution in shallow, wind-stressed lakes: a case for sediment-mapping surveys in paleolimnological studies. J. Paleolim. 15: 207–221.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brenner, M., Whitmore, T.J., Curtis, J.H. et al. Stable isotope (δ13C and δ15N) signatures of sedimented organic matter as indicators of historic lake trophic state. Journal of Paleolimnology 22, 205–221 (1999). https://doi.org/10.1023/A:1008078222806

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008078222806

Navigation