Skip to main content
Log in

Metals and models: Diagenic modelling in freshwater lacustrine sediments

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

This review aims to distill and synthesize the existing information on the use of models to describe and predict the distribution and movement of metals in lacustrine sediments. As such it examines the causes of metal diagenesis, the origin and form of the equations that govern these phenomena, and the predictability or measurability of the parameters that appear in the models. The paper concludes by highlighting some seminal results from modelling studies, including the determination of the factors controlling the formation of surficial Mn-Fe-enriched zone or layers, the substantial contribution possible from metal reduction to organic matter regeneration, the calculation of mixing-corrected metal input histories to lakes, and the prediction of growth rates and morphologies for both deep-sea and lacustrine ferromanganese nodules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amano, K., T. Fukushima & O. Nakasugi, 1992. Diffusive exchange of linear alkylbenzenesulfonates (LAS) between overlying water and bottom sediment. Hydrobiol. 235/236: 491–499.

    Google Scholar 

  • Aller, R. C., 1980. Diagenetic processes near the sediment-water interface of Long Island Sound. II. Fe and Mn. Adv. Geophys. 22: 351–415.

    Google Scholar 

  • Aller, R. C., 1982. The effects of macrobenthos on chemical properties of marine sediment and overlying waters. In McCall, P. L. & M. J. S. Tevesz (eds), Animal-Sediment Relations. Plenum Publishers, N.Y.: 53–102.

    Google Scholar 

  • Aller, R. C., 1988. Benthic fauna and biogeochemical processes in marine sediments: the role of burrow structure. In Blackburn, T. H. & J. Sørensen (eds), Nitrogen Cycling in Coastal Marine Environments, SCOPE Report. J. Wiley & Sons, N.Y.: 301–338.

    Google Scholar 

  • Aller, R. C., 1990. Bioturbation and manganese cycling in hemipelagic sediments. Phil. Trans. r. Soc., Lond. A331: 51–68.

    Google Scholar 

  • Aller, R. C., 1994. The sedimentary Mn cycle in Long Island Sound: its role as intermediate oxidant and the influence of bioturbation, O2 and Corg flux on diagenetic reaction balance. J. Mar. Res. 52: 259–295.

    Google Scholar 

  • Aller, R. C. & P. D. Rude, 1988. Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediments. Geochim. Cosmochim. Acta 52: 751–765.

    Google Scholar 

  • Baccini, P., 1985. Phosphate interactions at the sediment-water interface. In Stumm, W. (ed.), Chemical Processes in Lakes. J. Wiley & Sons, N.Y.: 189–205.

    Google Scholar 

  • Bear, J., 1972. Dynamics of fluids in porous media. (Reprinted) Dover Publishers, N.Y., 764 pp.

    Google Scholar 

  • Benoit, G. & H. F. Hemond, 1990. 210Po and 210Pb remobilization from lake sediments in relation to iron and manganese cycling. Env. Sci. Technol. 24: 1224–1234.

    Google Scholar 

  • Berner, R. A., 1964. An idealized model of dissolved sulfate distribution in recent sediments. Geochim. Cosmochim. Acta 28: 1497–1503.

    Google Scholar 

  • Berner, R. A., 1972. Chemical kinetic models of early diagenesis. J. Geol. Edu. 20: 267–272.

    Google Scholar 

  • Berner, R. A., 1974. Kinetic models for the early diagenesis of nitrogen, sulfur, phosphorus, and silicon in anoxic marine sedimentss. In Goldberg, E. D. (ed.), The Seas, 5. J. Wiley & Sons, N.Y.: 427–450.

    Google Scholar 

  • Berner, R. A., 1980. Early diagenesis: a theoretical approach. Princeton University Press, Princeton, N.J., 241 pp.

    Google Scholar 

  • Boudreau, B. P., 1984. On the equivalence of nonlocal and radialdiffusion models for porewater irrigation. J. Mar. Res. 42: 731–735.

    Google Scholar 

  • Boudreau, B.P., 1986a. Mathematics of tracer mixing in sediments: I. Spatially-dependent, diffusive mixing. Am. J. Sci. 286: 161–198.

    Google Scholar 

  • Boudreau, B. P., 1986b. Mathematics of tracer mixing in sediments: II. Nonlocal mixing and biological conveyor-belt phenomena. Am. J. Sci. 286: 199–238.

    Google Scholar 

  • Boudreau, B. P., 1988. Mass-transport constraints on the growth of discoidal ferromanganese deposits. Am. J. Sci. 288: 777–797.

    Google Scholar 

  • Boudreau, B. P., 1996a. A method-of-lines code for Carbon and nutrient diagenesis in aquatic sediments. Comput. Geosci. 22: 479–496.

    Google Scholar 

  • Boudreau, B. P., 1996b. The diffusive tortuosity of fine-grained unlithified sediments. Geochim. Cosmochim. Acta 60: 3139–3142.

    Google Scholar 

  • Boudreau, B. P., 1997a. Diagenetic models and their implementation. Springer Verlag, Heidelberg, Germany, 414 pp.

    Google Scholar 

  • Boudreau, B. P., 1997b. A one-dimensional model for bed-boundary layer particle exchange. J. Mar. Syst. 11: 279–303.

    Google Scholar 

  • Boudreau, B. P., D. E. Canfield & A. Mucci, 1992. Early diagenesis in a marine sapropel, Mangrove Lake, Bermuda. Limnol. Oceanogr. 37: 1738–1753.

    Google Scholar 

  • Boudreau, B. P. & N. L. Guinasso, 1982. The influence of a diffusive sublayer on accretion, dissolution and diagenesis at the sea floor. In Fanning, K. A. & F. T. Manheim (eds ), The Dynamic Environment of the Sea Floor. Lexington Books, Lexington, MA: 115–145.

    Google Scholar 

  • Boudreau, B. P. & D. M. Imboden, 1987. Mathematics of tracer mixing in sediments: III. The theory of nonlocal mixing within sediments. Am. J. Sci. 287: 693–719.

    Google Scholar 

  • Boudreau, B. P., A. Mucci, B. Sondby, G.W. Lather & N. Silverberg, 1998. Comparative diagenesis at three sites on the Canadian continental margin. J. Mar. Res. 56: 1259–1284.

    Google Scholar 

  • Boudreau, B. P. & M. R. Scott, 1978. A model for the diffusioncontrolled growth of deep-sea manganese nodules. Am. J. Sci. 278: 903–929.

    Google Scholar 

  • Boudreau, B. P. & R. J. Taylor, 1989. A theoretical study of diagenetic concentration fields near manganese nodules at the sediment-water interface. J. Geophys. Res. 94: 2124–2136.

    Google Scholar 

  • Bouldin, D. R., 1968. Models for describing the diffusion of oxygen and other mobile constituents across the mud-water interface. J. Ecol. 56: 77–87.

    Google Scholar 

  • Brezonik, P. L., 1994. Chemical kinetics and process dynamics in aquatic systems. Lewis Publishers, Boca Raton, FL, 754 pp.

    Google Scholar 

  • Burdige, D. J., 1993. The biogeochemistry of manganese and iron reduction in marine sediments. Earth-Sci. Rev. 35: 249–284.

    Google Scholar 

  • Burdige, D. J. & J. M. Gieskes, 1983. A pore water/solid phase diagenetic model for manganese in marine sediments. Am. J. Sci. 283: 29–47.

    Google Scholar 

  • Callender, E. & C. J. Bowser, 1976. Freshwater ferromanganese deposits. In Wolf, K. H. (ed.), Handbook of Strata-Bound and Stratiform Ore Deposits. Elsevier Scientific Publishers, Amsterdam (The Netherlands), 341–394.

    Google Scholar 

  • Calvert, S. E., 1978. Geochemistry of oceanic ferromanganese deposits. Phil. Trans. r. Soc., Lond. A. 290: 43–73.

    Google Scholar 

  • Calvert, S. E. & N. B. Price, 1972. Diffusion and reaction profiles of dissolved manganese in the pore waters of marine sediments. Earth Planet. Sci. Lett. 16: 245–249.

    Google Scholar 

  • Canfield, D. E., B. B. Jørgensen, H. Fossing, R. Glud, J. Gundersen, N. B. Ramsing, B. Thamdrup, J. W. Hansen, L. P. Nielsen & P. O. J. Hall. 1993a. Pathways of carbon oxidation in three continental margin sediments. Mar. Geol. 113: 27–40.

    Google Scholar 

  • Canfield, D. E., B. Thamdrup & J. W. Hansen, 1993b. The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction. Geochim. Cosmochim. Acta 57: 3867–3883.

    Google Scholar 

  • Carignan, R. & D. R. S. Lean, 1991. Regeneration of dissolved substances in a seasonally anoxic lake: the relative importance of processes occurring in the water column and in the sediments. Limnol. Oceanogr. 36: 683–707.

    Google Scholar 

  • Chester, R., 1990. Marine geochemistry. Unwin Hyman, London, 698 pp.

    Google Scholar 

  • Christensen, E. R., 1982. A model for radionuclides in sediments influenced by mixing and compaction. J. Geophys. Res. 87: 566–572.

    Google Scholar 

  • Christensen, E. R. & P. K. Bhunia, 1986. Modeling radiotracers in sediments: comparison with observations in Lakes Huron and Michigan. J. Geophys. Res. 91: 8559–8571.

    Google Scholar 

  • Christensen, E. R. & R. H. Goetz, 1987. Historical fluxes of particlebound pollutants from deconvolved sedimentary records. Env. Sci. Technol. 21: 1088–1096.

    Google Scholar 

  • Christensen, E. R. & R. J. Klein, 1991. 'Unmixing’ of 137Cs, Pb, Zn, and Cd records in lake sediments. Env. Sci. Technol. 25: 1627–1637.

    Google Scholar 

  • Christensen, E. R. & J. L. Osuna, 1989. Atmospheric fluxes of lead, zinc, and cadmium from frequency domain deconvolution of sedimentary records. J. Geophys. Res. 94: 14585–14597.

    Google Scholar 

  • Christensen, J. P., A. H. Devol & W. M. Smethie, 1984. Biological enhancement of solute exchange between sediments and bottom water on the Washington continental shelf. Continent. Shelf Res. 3: 9–23.

    Google Scholar 

  • Davison, W., 1982. Transport of iron and manganese in relation to the shapes of their concentration-depth profiles. Hydrobiol. 92: 463–471.

    Google Scholar 

  • Davison, W., 1985. Conceptual models for transport at a redox boundary. In Stumm, W. (ed.), Chemical Processes in Lakes. J. Wiley & Sons, N.Y.: 31–53.

    Google Scholar 

  • Davison, W, 1993. Iron and manganese in lakes. Earth-Sci. Rev. 34: 119–163.

    Google Scholar 

  • Dean, W. & S. K. Ghosh, 1981. Geochemistry of freshwater ferromanganese deposits in North America. In Grasselly, G. (ed.), Geology and Geochemistry of Manganese, III. Akadémiai Kiadó, Budapest: 255–277.

    Google Scholar 

  • Dhakar, S. P. & D. J. Burdige, 1996. A coupled, non-linear, steady state model for early diagenetic processes in pelagic sediments. Am. J. Sci. 296: 296–330.

    Google Scholar 

  • Domenico, P. A., 1977. Transport phenomena in chemical rate processes in sediments. Ann. Rev. Earth Planet. Sci. Lett. 5: 287–317.

    Google Scholar 

  • Elderfield, H, 1976. Manganese fluxes to the oceans. Mar. Chem. 4: 103–132.

    Google Scholar 

  • Emerson, S., R. Jahnke & D. Heggie, 1984. Sediment-water exchange in shallow water estuarine sediments. J. Mar. Res. 42: 709–730.

    Google Scholar 

  • Emerson, S. & G. Widmer, 1978. Early diagenesis in anaerobic lake sediments – II. Thermodynamic and kinetic factors controlling the formation of iron phosphate. Geochim. Cosmochim. Acta 42: 1307–1316.

    Google Scholar 

  • Fisher, J. B., 1982. Effects of macrobenthos on the chemical diagenesis of freshwater sediments. In McCall, P. L. & M. J. S. Teveszs (eds), Animal-Sediment Relations. Plenum Publishers, N.Y.: 177–218.

    Google Scholar 

  • Fisher, J. B., W. J. Lick, P. L. McCall & J. A. Robbins, 1980. Vertical mixing of lake sediments by tubificid oligochaetes. J. Geophys. Res. 85: 3997–4006.

    Google Scholar 

  • Formica, S. J., J. A. Baron, L. J. Thibodeaux & K. T. Valsaraj, 1988. PCB transport into lake sediments. Conceptual model and laboratory simulation. Env. Sci. Technol. 22: 1435–1440.

    Google Scholar 

  • Freeze, R. A. & J. A. Cherry, 1979. Groundwater. Prentice-Hall, Englewood Cliffs, N.J., 604 pp.

    Google Scholar 

  • Froelich, P. N., G. P. Klinkhammer, M. L. Bender, N. A. Luedtke, G. R. Heath, D. Cullend & P. Dauphin, 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta 43: 1075–1090.

    Google Scholar 

  • Furrer, G. & B. Wehrli, 1996. Microbial reactions, chemical speciation, and multicomponent diffusion in porewaters of a eutrophic lake. Geochim. Cosmochim. Acta 60: 2333–2346.

    Google Scholar 

  • Goldberg, E. D. & M. Koide, 1962. Geochronological studies of deep-sea sediments by the ionium/thorium method. Geochim. Cosmochim. Acta 26: 417–450.

    Google Scholar 

  • Gratton, Y., H. M. Edenborn, N. Silverberg & B. Sundby, 1990. A mathematical model for manganese diagenesis in bioturbated sediments. Am. J. Sci. 290: 246–262.

    Google Scholar 

  • Hamilton-Taylor, J. & W. Davison, 1995. Redox-driven cycling of trace elements in lakes. In Lerman, A., D. M. Imboden & J. R. Gat (eds), Physics and Chemistry of Lakes. Springer-Verlag, Berlin: 217–263.

    Google Scholar 

  • Heath, G. R., 1981. Ferromanganese nodules of the deep sea. Econ. Geol. 75th Ann. Volume: 736–765.

  • Hüttel, M. & I. T. Webster, in press. Advective flow in permeable sediment. In Boudreau, B. P. & B. B. Jørgensen (eds), The Benthic Boundary Layer: Transport Processes and Biogeochemistry. Oxford University Press, Oxford, UK.

  • Ishikawa, M. & H. Nishimura, 1989. Mathematical model of phosphate release rate from sediments considering the effect of dissolved oxygen in overlying water. Wat. Res. 23: 351–359.

    Google Scholar 

  • Jørgensen, B. B. & B. P. Boudreau, in press. Diagenesis and the benthic boundary layer. In Boudreau, B. P. & B. B. Jørgensen (eds), The Benthic Boundary Layer: Transport Processes and Biogeochemistry. Oxford University Press, Oxford, UK.

  • Kamp-Nielsen, L., 1983. Sediment-water exchange models. In Jørgensen, S.E. (ed.), Application of Ecological Modelling in Environmental Management, Part A, Developments in Environmental Modelling 4A. Elsevier Science Publishers, Amsterdam (The Netherlands): 387–420.

    Google Scholar 

  • Kestin, J., M. Sokolov & W. A. Wakeham, 1978. J. Phys. Chem. Ref. Data 7: 941–948.

    Google Scholar 

  • Klinkhammer, G., D. T. Heggie & D. W. Graham, 1982. Metal diagenesis in oxic marine sediments. Earth Planet. Sci. Lett. 61: 211–219.

    Google Scholar 

  • Krezoski, J. R. & J. A. Robbins, 1985. Vertical distribution of feeding and particle-selective transport of 137Cs in lake sediments by lumbriculid oligochaetes. J. Geophys. Res. 90: 11999–12006.

    Google Scholar 

  • Krezoski, J. R., J. A. Robbins & D. S. White, 1984. Dual radiotracer measurement of zoobenthos-mediated solute and particle transport in freshwater sediments. J. Geophys. Res. 89: 7937–7947.

    Google Scholar 

  • Krishnaswami, S., L. K. Benninger, R. C. Aller & K. L. von Damm, 1980. Atmospherically-derived radionuclides as tracers of sediment mixing and accumulation in near-shore marine and lake sediments: evidence from 7Be, 210Pb, and 239,240Pu. Earth Planet. Sci. Lett. 47: 307–318.

    Google Scholar 

  • Krishnaswami, S. & D. Lal, 1978. Radionuclide limnochronology. In Lerman, A. (ed.), Lakes, Chemistry, Geology, Physics. Springer-Verlag, N.Y.: 153–177.

    Google Scholar 

  • Lasaga, A. C., 1998. Kinetic Theory in the Earth Sciences. Princeton University Press, Princeton, N.J., 811 pp.

    Google Scholar 

  • Lerman, A., 1977. Migrational processes and chemical reactions in interstitial waters. In Goldberg, E. D. (ed.), The Sea, 5. John Wiley & Sons, N.Y.: 695–738.

    Google Scholar 

  • Lerman, A., 1978. Chemical exchange across sediment-water interface. Ann. Rev. Earth Planet. Sci. 6: 281–303.

    Google Scholar 

  • Lerman, A., 1979. Geochemical Processes: Water and Sediment Environments. J. Wiley & Sons, N.Y., 481 pp.

    Google Scholar 

  • Lerman, A. & G. J. Brunskill, 1971. Migration of major constituents from lake sediments into lake water and its bearing on lake water composition. Limnol. Oceanogr. 16: 880–890.

    Google Scholar 

  • Lerman, A & R. R. Weiler, 1970. Diffusion and accumulation of chloride and sodium in Lake Ontario sediments. Earth Planet. Sci. Lett. 10: 150–156.

    Google Scholar 

  • Li, Y.-H., J. Bischoff & G. Mathieu, 1969. The migration of manganese in the Arctic Basin sediment. Earth Planet. Sci. Lett. 7: 265–270.

    Google Scholar 

  • Li, Y.-H. & S. Gregory, 1984. Diffusion of ions in seawater and in deep-sea sediments. Geochim. Cosmochim. Acta 38: 703–714.

    Google Scholar 

  • Löfgren, S. & B. Boström, 1989. Interstitial water concentrations of phosphorus, iron and manganese in a shallow, eutrophic Swedish lake – Implications for phosphorus cycling. Wat. Res. 23: 1115–1125.

    Google Scholar 

  • Lynch, D. R. & C. B. Officer, 1984. Nonlinear parameter estimation for sediment cores. Chem. Geol. 44: 203–225.

    Google Scholar 

  • Mangini, A., A. Eisenhauer & P. Walter, 1990. Response of manganese in the ocean to climatic cycles in the Quaternary. Paleoceanogr. 5: 811–821.

    Google Scholar 

  • Manheim, F. T., 1965. Manganese-iron accumulations in the shallow marine environment. In Schink, D. R. & J. T. Corliss (eds), Marine Geochemistry. Grad. School Oceanography, University Rhode Island, Occ. Publ. 3: 217–275.

  • Martin, W. R. & G. T. Banta, 1992. The measurement of sediment irrigation rates: a comparison of the Br-tracer and 222Rn/226Ra disequilibrium techniques. J. Mar. Res. 50: 125–154.

    Google Scholar 

  • Matisoff, G., 1995. Effects of bioturbation on solute and particle transport in sediments. In Allen, H. E. (ed.), Metal Contaminated Sediments. Ann Arbor Press, Chelsea, MI, USA: 201–272.

    Google Scholar 

  • Matisoff, G., J. B. Fisher & P. L. McCall, 1981. Kinetics of nutrient and metal release from decomposing lakes sediments. Geochim. Cosmochim. Acta 45: 2333–2347.

    Google Scholar 

  • Marinelli, R. L. & B. P. Boudreau, 1996. An experimental and modeling study of pH and related solutes in an irrigated anoxic coastal sediment. J. Mar. Res. 54: 939–966.

    Google Scholar 

  • McCall, P. L. & J. B. Fisher, 1979. Effects of tubificid oligochaetes on physical and chemical properties of Lake Erie sediments. In Brinkhurst, R. O. & D. G. Cook (eds), Aquatic Oligochaete Biology. Plenum Press, N.Y.: 253–317.

    Google Scholar 

  • McCall, P. L. & M. J. S. Tevesz, 1982. The effects of benthos on the physical properties of freshwater sediments. In McCall, P. L. & M. J. S. Tevesz (eds), Animal-Sediment Relations. Plenum Publishers, N.Y.: 105–176.

    Google Scholar 

  • Michard, G., 1971. Theoretical model for manganese distribution in calcareous sediment cores. J. Geophys. Res. 76: 2179–2186.

    Google Scholar 

  • Middelburg, J. J., K. Soetaert & P. M. J. Herman, 1997. Empirical relationships for use in global diagenetic models. Deep-Sea Res. 44: 327–344.

    Google Scholar 

  • Mortimer, C. H., 1941, 1942. The exchange of dissolved substances between mud and water in lakes. J. Ecol. 29: 280–329; 30: 147–201.

    Google Scholar 

  • Mulsow, S., B. P. Boudreau & J. N. Smith, 1998. Bioturbation and porosity gradients. Limnol. Oceanogr. 43: 1–9.

    Google Scholar 

  • Murray, J. & R. Irvine, 1895. On the manganese oxides and manganese nodules in marine deposits. Trans. r. Soc., Edin. 37: 721–742.

    Google Scholar 

  • Officer, C. B., 1982. Mixing, sedimentation rates and age dating for sediment cores. Mar. Geol. 46: 261–278.

    Google Scholar 

  • Reible, D., K. T. Valsaraj & L. J. Thibodeaux, 1991. Chemodynamic models for transport of contaminants from sediment beds. In Hutzinger, O. (ed.), The Handbook of Environmental Chemistry, 2. Springer-Verlag, Berlin: 185–228.

    Google Scholar 

  • Rhoads, D. C., 1974. Organism-sediment relations on the muddy sea floor. Oceanogr. Mar. Biol. Ann. Rev. 12: 263–300.

    Google Scholar 

  • Rice, D. L., 1986. Early diagenesis in bioadvective sediments: relationships between the diagenesis of beryllium-7, sediment reworking rates, and the abundance of conveyor-belt deposit-feeders. J. Mar. Res. 44: 149–184.

    Google Scholar 

  • Robbins, J. A., 1986. A model for particle-selective transport of tracers in sediments with conveyor-belt deposit feeders. J. Geophys. Res. 91: 8542–8558.

    Google Scholar 

  • Robbins, J. A. & E. Callender, 1975. Diagenesis of manganese in Lake Michigan sediments. Am. J. Sci. 275: 512–533.

    Google Scholar 

  • Robbins, J. A., J. R. Krezoski & S. C. Mozley, 1977. Radioactivity in sediments of the Great Lakes: postdepositional redistribution by deposit-feeding organisms. Earth Planet. Sci. Lett. 36: 325–333.

    Google Scholar 

  • Robbins, J. A., P. L. McCall, J. B. Fisher & J. R. Krezoski, 1979. Effect of deposit feeders on migration of 137Cs in lake sediments. Earth Planet. Sci. Lett. 42: 277–287.

    Google Scholar 

  • Robbins, J. A., A. Mudroch & B. G. Oliver, 1990. Transport and storage of 137Cs and 210Pb in sediments of Lake St. Clair. Can. J. Fish. Aquat. Sci. 47: 572–587.

    Google Scholar 

  • Sarazin, G., J.-F. Gaillard, L. Philippe & C. Rabouille, 1995. Organic matter mineralization in the pore water of a eutrophic lake (Aydat Lake, Puy de Dôme, France). Hydrobiol. 315: 95–118.

    Google Scholar 

  • Segl, M., A. Mangini, J. Beer, G. Bonani, M. Suter & W. Wölfli, 1989. Growth rate variations of manganese nodules and crusts induced by paleoceanographic events. Paleoceanogr. 4: 511–530.

    Google Scholar 

  • Schimmield, G. B. & T. F. Pedersen, 1990. The geochemistry of reactive trace metals and halogens in hemipelagic continental margin sediments. Aquat. Sci. 3: 255–279.

    Google Scholar 

  • Soetaert, K., P. M. J. Herman & J. J. Middelburg, 1996. A model for early diagenetic processes from shelf to abyssal depths. Geochim. Cosmochim. Acta 60: 1019–1040.

    Google Scholar 

  • Stumm, W. & J. J. Morgan, 1996. Aquatic chemistry, 3rd ed. J. Wiley & Sons, N.Y., 1022 pp.

    Google Scholar 

  • Van Cappellen, P. & J.-F. Gaillard, 1996. Biogeochemical dynamics in aquatic sediments. In Lichtner, P. C., C. I. Steefel & E. H. Oelkers (eds), Reactive Transport in Porous Media. Reviews in Mineralogy 34, Mineralogical Society of America, Washington, DC: 335–376.

    Google Scholar 

  • Van Cappellen, P., J.-F. Gaillard & C. Rabouille, 1993. Biogeochemical transformations in sediments: kinetic models of early diagenesis. In Wollast, R., L. Chou & F. Mackenzie (eds), Interactions of C, N, P and S Biogeochemical Cycles. NATO-ARW, Springer Verlag, Berlin: 401–445.

    Google Scholar 

  • Van Cappellen, P. & Y. Wang, 1995. Metal cycling in surface sediments: modelling the interplay of transport and reaction. In Allen, H. E. (ed.), Metal Contaminated Sediments. Ann Arbor Press, Chelsea, MI, USA: 21–64.

    Google Scholar 

  • Van Cappellen, P. & Y. Wang, 1996a. Cycling of iron and manganese in surface sediments: a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen sulfur, iron, and manganese. Am. J. Sci. 296: 197–243.

    Google Scholar 

  • Van Cappellen, P. & Y. Wang, 1996b. A multicomponent reactive transport model of early diagenesis: application to redox cycling in coastal marine sediments. Geochim. Cosmochim. Acta 60: 2993–3014.

    Google Scholar 

  • Van der Weijden, C. H., 1992. Early diagenesis and marine pore water. In Wolf, K. H. & G. V. Chilingarian (eds), Diagenesis III, Developments in Sedimentology 47. Elsevier Publishers, Amsterdam (The Netherlands): 13–134.

    Google Scholar 

  • Van Sickle, J., W. C. Weimer & D. P. Larsen, 1983. Mixing rates in Shagawa Lake, Minnesota, sediments as determined from 106Ru profiles. Geochim. Cosmochim. Acta 47: 2189–2197.

    Google Scholar 

  • Walling, D. E. & H. Qingping, 1992. Interpretation of caesium-137 profiles in lacustrine and other sediments: the role of catchmentderived inputs. Hydrobiol. 235/236: 219–230.

    Google Scholar 

  • Wang W. & P. Van Cappellen, 1996. A multicomponent reactive transport model of early diagenesis: application to redox cycling in coastal marine sediments. Geochim. Cosmochim. Acta 60: 2993–3014.

    Google Scholar 

  • Wang, X. & G. Matisoff, 1997. Solute transport in sediments by a large freshwater oligochaete, Branchiura sowerbyi. Env. Sci. Technol. 31: 1926–1933.

    Google Scholar 

  • Wersin, P., P. Höhener, R. Giovanoli & W. Stumm, 1991. Early diagenetic influences on iron transformations in a freshwater lake sediment. Chem. Geol. 90: 233–252.

    Google Scholar 

  • Winter, T. C., 1995. Hydrological processes and the water budget of lakes. In Lerman, A., D. M. Imboden & J. R. Gat (eds), Physics and Chemistry of Lakes. Springer-Verlag, Berlin: 37–62.

    Google Scholar 

  • Winterhalter, B., 1981. Ferromanganese concretions in the Baltic Sea. In Grasselly, G. (ed.) Geology and Geochemistry of Manganese, III. Akadémiai Kiadó, Budapest; 227–254.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boudreau, B.P. Metals and models: Diagenic modelling in freshwater lacustrine sediments. Journal of Paleolimnology 22, 227–251 (1999). https://doi.org/10.1023/A:1008144029134

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008144029134

Navigation