Skip to main content
Log in

Motion Perception Using Analog VLSI

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Motion perception is arguably a fundamental mechanism used by natural species to accomplish a number of tasks, such as navigating freely in an unknown environment. Traditional motion perception methods tend to be computationally intensive, requiring powerful computers and large memories. However, by copying biological mechanisms, such as elementary motion discrimination at the early stages of the visual processing paths, it should be possible to build small and efficient motion perception systems. This paper describes the manner in which a simple motion perception model based on the insect visual system has been implemented using mixed analog/digital VLSI. The device has been fabricated in a 2 micron double metal, double polysilicon process, and comprises 61 photo-detectors, and associated analog and digital circuitry. While not entirely successful in that component mismatches hamper the detection of dark-to-bright changes in contrast, the results clearly show the feasibility of using such a device in autonomous control systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Mead, Analog VLSI and Neural Systems. Addison-Wesley, 1989.

  2. S. Huang and A.N. Netravali, “Motion and structure from feature correspondences: A review,” in Proceedings of the IEEE82(2), 1994, pp. 252-268.

    Article  Google Scholar 

  3. A. Singh, Optic flow computation: A unified perspective. IEEE Computer Society Press, 1991.

  4. T. Poggio, V. Torre, and C. Koch, “Computational vision and regularisation theory.” Nature317, pp. 314-319, 1985.

    Google Scholar 

  5. C. Koch, “Seeing chips: Analog VLSI circuits for computer vision.” Neural Computation1, pp. 184–200, 1989.

    Google Scholar 

  6. A. Yakovleff, D. Abbott, X.T. Nguyen, and K. Eshraghian, “Obstacle avoidance and motion-induced navigation,” in Proc. Computer Architectures for Machine Perception Workshop, Como, Italy, 1995, pp. 384-393.

  7. A. Yakovleff, “Architectural studies for visual processing,” PhD Thesis, Department of Electrical and Electronic Engineering, The University of Adelaide, 1995.

  8. K. Nakayama, “Biological image motion processing: A review.” Vision Research25(5), pp. 625-660, 1985.

    Article  Google Scholar 

  9. W. Reichardt and T. Poggio, “Figure-ground discrimination by relative movement in the fly visual system.” Biological Cybernetics35, pp. 81-100, 1979.

    Google Scholar 

  10. J. B. Mulligan, “Nonlinear combination rules and the perception of visual motion transparency.” Vision Research33(14), pp. 2021-2030, 1993.

    Article  Google Scholar 

  11. E. C. Sobel, “The locust's use of motion parallax to measure distance.” Journal of Comparative Physiology A167, pp. 579-588, 1990.

    Article  Google Scholar 

  12. D. Regan and K.I. Beverley, “Looming detectors in the human visual pathway.” Vision Research18(4), pp. 415-421, 1978.

    Article  Google Scholar 

  13. D. Regan and S. J. Hamstra, “Dissociation of discrimination thresholds for time to contact and for rate of angular expansion.” Vision Research33(4), pp. 447-462, 1993.

    Article  Google Scholar 

  14. R. Sekuler, S. Anstis, O. J. Braddick, T. Brandt, J. A. Movshon, and G. Orban, “The perception of motion,” in Visual Perception: The Neurophysiological Foundations(Lothar Spillmann and John S. Werner, eds.), Academic Press, 1990, pp. 205-230.

  15. G. A. Orban, H. Kennedy, and H. Maes, “Response to movement of neurons in areas 17 and 18 of the cat: Direction selectivity.” Journal of Neurophysiology45(6), pp. 1059-1072, 1981.

    Google Scholar 

  16. P. Thompson, “The coding of velocity of movement in the human visual system.” Vision Research24(1), pp. 41-45, 1984.

    Article  Google Scholar 

  17. G. A. Orban, B. Gulyas, and R. Vogels, “Influence of a moving textured background on direction selectivity of cat striate neurons.” Journal of Neurophysiology57(6), pp. 1792-1812, 1987.

    Google Scholar 

  18. H. B. Barlow and W. R. Levick, “The nechanism of directionally selective units in rabbit's retina.” Journal of Physiology178, pp. 477-504, 1965.

    Google Scholar 

  19. A. Riehle and N. Franceschini, “Motion detection in flies: Parametric control over ON-OFF pathways.” Experimental Brain Research54, pp. 390-394, 1984.

    Article  Google Scholar 

  20. L. G. Bishop, D. G. Keehn and G. D. McCann, “Motion detection by interneurons of optic lobes and brain of the Flies Calliphora phaeniciaand Musca domestica.” Journal of Neurophysiology31(4), pp. 509-525, 1968.

    Google Scholar 

  21. A. Borst and M. Egelhaaf, “Principles of motion detection.” Trends in Neurosciences12(8), pp. 297-306, 1989.

    Article  Google Scholar 

  22. W. Reichardt, “Autocorrelation, a Principle for the evaluation of sensory information by the central nervous system,” in Sensory Communication(Walter A. Rosenblith, ed.). MIT Press and John Wiley & Sons, New York and London, 1961, pp. 303-317.

    Google Scholar 

  23. J. P. Van Santen and G. Sperling, “Temporal covariance model of human motion perception.” Journal of the Optical Society of America A1(5), pp. 451-473, 1984.

    Google Scholar 

  24. J. P. Van Santen and G. Sperling, “Elaborated Reichardt detectors.” Journal of the Optical Society of America A2(2), pp. 300-321, 1985.

    Google Scholar 

  25. A. B. Watson and A. J. Ahumada Jr., “Model of human visual-motion sensing.” Journal of the Optical Society of America A2(2), pp. 322-342, 1985.

    Google Scholar 

  26. E. H. Adelson and J. R. Bergen, “Spatiotemporal energy models for the perception of motion.” Journal of the Optical Society of America A2(2), pp. 284-299, 1985.

    Google Scholar 

  27. G. A. Horridge, “A template theory to relate visual processing to digital circuitry.” Proc. Royal Society of London B239, pp. 17-33, 1990.

    Google Scholar 

  28. M. V. Srinivasan, R. B. Pinter and D. Osorio, “Matched filtering in the visual system of the fly: large monopolar cells of the lamina are optimized to detect moving edges and blobs.” Proc. Royal Society of London B240, pp. 279-293, 1990.

    Google Scholar 

  29. X. T. Nguyen, A. Bouzerdoum, R.E. Bogner, K. Eshraghian, D. Abbott and A. Moini, “The stair-step tracking algorithm for velocity estimation,” in Proc. First Australian and New Zealand Conf. on Intelligent Information Systems, Perth, Australia, 1993, pp. 412-416.

  30. A. Yakovleff, A. Moini, A. Bouzerdoum, X. T. Nguyen, R. E. Bogner, K. Eshraghian, and D. Abbott, “A micro-sensor based on insect vision,” in Proc. Computer Architectures for Machine Perception Workshop, New Orleans, 1993, pp. 137-146.

  31. X. T. Nguyen, K. Eshraghian, A. Moini, A. Bouzerdoum, A. Yakovleff, D. Abbott, and R. E. Bogner, “An Implementation of a smart visual micro-sensor based on insect vision,” in Proc. 12th Australian Microelectronics Conf., Gold Coast, Australia, 1993, pp. 129-134.

  32. K. Hausen, “Motion sensitive interneurons in the optomotor system of the fly-II. The horizontal cells: Receptive field organization and response characteristics.” Biological Cybernetics46, pp. 67-79, 1982.

    Article  Google Scholar 

  33. G. Westheimer and C. Wehrhahn, “Discrimination of direction of motion in human vision.” Journal of Neurophysiology71(1), pp. 33-37, 1994.

    Google Scholar 

  34. A. Yakovleff, X. T. Nguyen, A. Bouzerdoum, A. Moini, R. E. Bogner, and K. Eshraghian, “Dual-purpose interpretation of sensory information,” in Proc. IEEE Int. Conf. on Robotics and Automation, San Diego, Vol. 2, 1994, pp. 1635-1640.

    Google Scholar 

  35. J. E. Tanner and C. Mead, “A correlating optical motion detector,” in Proc. Conf. on Advanced Research in VLSI(Paul Penfield, Jr., ed.), 1984, pp. 57-64.

  36. A. Moini, A. Bouzerdoum, A. Yakovleff, D. Abbott, O. Kim, K. Eshraghian, and R. E. Bogner, “An analog implementation of a smart visual micro-sensor based on insect vision,” in Proc. Int. Symp. on VLSI Technology, Systems, and Applications, Taipei, Taiwan, 1993, pp. 283-287.

  37. A. Moini, “Design of a VLSI motion detector based upon the insect visual system,” Master of Engineering Science Thesis, The University of Adelaide, 1993.

  38. T. Delbrück and C. A. Mead, “Time-derivative adaptive silicon photoreceptor array,” in Proc. Infrared Sensors: Detectors, Electronics, and Signal Processing, SPIE Vol. 1541, 1991, pp. 92-99.

    Google Scholar 

  39. A. Moini, A. Bouzerdoum, K. Eshraghian, A. Yakovleff, and X. T. Nguyen, “The architecture of an insect vision based VLSI motion detection chip,” in Proc. Australian Microelectronics Conf., Adelaide, Australia, 1995, pp. 68-73.

  40. A. Moini, A. Blanksby, R. Beare, A. Bouzerdoum, and K. Eshraghian, “Multiplicative noise cancellation (MNC) in analog VLSI vision sensors,” in Proc. Electronic Technology Directions to the Year 2000, Adelaide, Australia, 1995, pp. 253-257.

  41. A. Moini, “Vision chips or seeing silicon,”Internal Report, Centre for GaAs VLSI Technology, The University of Adelaide, 1996. Also available on the WWW at: http://www.eleceng.adelaide.edu.au/Groups/GAAS/Bugeye/ visionchips/.

  42. B.Y. Zavidovique and T.M. Bernard, “Generic functions for on-chip vision,” in Proc. 11th IAPR Int. Conf. on Pattern Recognition, The Hague, Netherlands, Vol. 4, 1992, pp. 1-10.

    Google Scholar 

  43. M. Tremblay, D. Laurendeau, and D. Poussart, “High resolution smart image sensor with integrated parallel analog processing for multiresolution edge extraction.” Robotics and Autonomous Systems11, pp. 231-242, 1993.

    Article  Google Scholar 

  44. J. L. Wyatt, Jr., C. Keast, M. Seidel, D. Standley, B. Horn, T. Knight, C. Sodini, H-S. Lee, and T. Poggio, “Analog VLSI systems for image acquisition and fast early vision processing.” Int. Journal of Computer Vision8(3), pp. 217-230, 1992.

    Google Scholar 

  45. J. Tanner and J. Luo, “A single chip imager and feature extractor,” in Proc. Visual Information Processing: From Neurons to Chips, SPIE Vol. 1473, 1991, pp. 76-87.

    Google Scholar 

  46. R. Forchheimer, K. Chen, C. Svensson and A. Ödmark, “Single-chip image sensors with a digital processor array.” Journal of VLSI Signal Processing5, pp. 121-131, 1993.

    Google Scholar 

  47. R. R. Etienne-Cummings, S. A. Fernando and J. Van der Spiegel, “Real-time 2-D analog motion detector VLSI circuit,” in Proc. Int. Joint Conf. on Neural Networks, Baltimore, Vol. IV, 1992, pp. 426-431.

    Google Scholar 

  48. W. Bair and C. Koch, “Real-time motion detection using an analog VLSI zero-crossing chip,” in Proc. Visual Information Processing: From Neurons to Chips, SPIE Vol. 1473, 1991, pp. 59-65.

    Google Scholar 

  49. J. Tanner and C. Mead, “Optical motion sensor,” in Analog VLSI and Neural Systems, Addison-Wesley, 1989, pp. 229-255.

  50. A. Moore and C. Koch, “A multiplication based analog motion detection chip,” in Proc. Visual Information Processing: From Neurons to Chips, SPIE Vol. 1473, 1991, pp. 66-75.

    Google Scholar 

  51. T. Delbrück, “Silicon retina with correlation-based velocity-tuned pixels.” IEEE Trans. on Neural Networks4(3), pp. 529-541, 1993.

    Article  Google Scholar 

  52. C. A. Mead and T. Delbrück, “Scanners for visualizing activity of analog VLSI circuitry.” Analog Integrated Circuits and Signal Processing1(2), pp. 93-106, 1991.

    Google Scholar 

  53. T. Horiuchi, W. Bair, B. Bishofberger, A. Moore, C. Koch, and J. Lazzaro, “Computing motion using analog VLSI vision chips: An experimental comparison among different approaches.” Int. Journal of Computer Vision8(3), pp. 203-216, 1992.

    Google Scholar 

  54. P. J. Sobey and G. A. Horridge, “An implementation of the template model of vision.” Proc. Royal Society of London B240, pp. 221-229, 1990.

    Google Scholar 

  55. G. A. Horridge and P. Sobey, “An artificial seeing system copying insect vision.” Int. Journal of Optoelectronics6(1/2), pp. 177-193, 1991.

    Google Scholar 

  56. W. B. Veldkamp and T. J. McHugh, “Binary optics,” Scientific American, pp. 50-55, May 1992.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yakovleff, A.J., Moini, A. Motion Perception Using Analog VLSI. Analog Integrated Circuits and Signal Processing 15, 183–200 (1998). https://doi.org/10.1023/A:1008203907863

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008203907863

Navigation