Skip to main content
Log in

Conjugate Functions for Convex and Nonconvex Duality

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We study conjugate duality with arbitrary coupling functions. Our only tool is a certain support property, which is automatically fulfilled in the two most widely used special cases, namely the case where the underlying space is a topological vector space and the coupling functions are the continuous linear ones, and the case where the underlying space is a metric space and the coupling functions are the continuous ones. We obtain thereby a simultaneous axiomatic extension of these two classical models. Also included is a condition for global optimality, which requires only the mentioned support property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balder, E. J. (1977), An extension of duality-stability relations to nonconvex optimization problems, SIAM Journal of Control and Optimization 15: 329–343.

    Google Scholar 

  2. Borwein, J. M. and Théra, M. (1992), Sandwich theorems for semicontinuous operators, Canadian Mathematical Bulletin 35: 463–474.

    Google Scholar 

  3. Brézis, H. (1987), Analyse fonctionnelle, Masson, Paris.

    Google Scholar 

  4. Dolecki, S. and Kurcyusz, S. (1978), On Ф-convexity in extremal problems, SIAM Journal of Control and Optimization 16: 277–300.

    Google Scholar 

  5. Ekeland, I. and Temam, R. (1976), Convex Analysis and Variational Problems, North-Holland, Amsterdam.

    Google Scholar 

  6. Engelking, R. (1989), General Topology, Revised and Completed Edition, Heldermann, Berlin.

    Google Scholar 

  7. Fenchel, W. (1949), On conjugate convex functions, Canadian Journal of Mathematics 1: 73–77.

    Google Scholar 

  8. Flores-Bazán, F. (1995), On a notion of subdifferentiability for non-convex functions, Optimization 33: 1–8.

    Google Scholar 

  9. Hahn, H. (1917), Ñber halbstetige und unstetige Funktionen, Sitzungsberichte Akad. Wiss. Wien Abt. IIa 126: 91–110.

    Google Scholar 

  10. Hiriart-Urruty, J.-B. (1989), From convex optimization to nonconvex optimization. Necessary and sufficient conditions for global optimality, in: F. H. Clarke, V. F. Demyanov, F. Giannessi (eds.), Nonsmooth Optimization and Related Topics, pp. 219–239, Plenum, New York.

    Google Scholar 

  11. Moreau, J. J. (1970), Inf-convolution, sous-additivité, convexité des fonctions numériques, Journal de Mathématiques Pures et Appliquées 49: 109–154.

    Google Scholar 

  12. Oettli, W. (1995), Kolmogorov conditions for vectorial optimization problems, OR Spektrum 17: 227–229.

    Google Scholar 

  13. Pallaschke, D. and Rolewicz, S. (1997), Foundations of Mathematical Optimization, Kluwer Academic Publishers, Dordrecht/Boston/London.

    Google Scholar 

  14. Rockafellar, R. T. (1974), Conjugate Duality and Optimization, Society for Industrial and Applied Mathematics, Philadelphia.

    Google Scholar 

  15. Stoer, J. and Witzgall, C. (1970), Convexity and Optimization in Finite Dimensions I, Springer Verlag, Berlin.

    Google Scholar 

  16. Stromberg, K. R. (1981), An Introduction to Classical Real Analysis, Wadsworth International, Belmont.

    Google Scholar 

  17. Tuy, H. and Oettli, W. (1994), On necessary and sufficient conditions for global optimality, Revista de Matemáticas Aplicadas 15: 39–41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oettli, W., Schläger, D. Conjugate Functions for Convex and Nonconvex Duality. Journal of Global Optimization 13, 337–347 (1998). https://doi.org/10.1023/A:1008300205223

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008300205223

Navigation