Skip to main content
Log in

Anaerobic treatment of sulphate-rich wastewaters

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Until recently, biological treatment of sulphate-rich wastewater was rather unpopular because of the production of H2S under anaerobic conditions. Gaseous and dissolved sulphides cause physical-chemical (corrosion, odour, increased effluent chemical oxygen demand) or biological (toxicity) constraints, which may lead to process failure. Anaerobic treatment of sulphate-rich wastewater can nevertheless be applied successfully provided a proper treatment strategy is selected. The strategies currently available are discussed in relation to the aim of the treatment: i) removal of organic matter, ii) removal of sulphate or iii) removal of both. Also a whole spectrum of new biotechnological applications (removal of organic chemical oxygen demand, sulphur, nitrogen and heavy metals), recently developed based on a better insight in sulphur transformations, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alleman JE, Veil JA & Canaday JT (1982) Scanning electron microscope evaluation of rotating biological biofilm. Wat. Res. 16: 543–550

    Google Scholar 

  • Alphenaar PA, Visser A & Lettinga G (1993) The effect of liquid upward velocity and hydraulic retention time on granulation in UASB reactors treating waste water with a high sulphate content. Biores. Technol. 43: 249–258

    Google Scholar 

  • Arora S, Mino T & Matsuo T (1995) Mechanism and favourable operating conditions of organic substrate removal in microaerophilic upflow sludge bed reactor (MUSB). Wat. Res. 29: 1895–1901

    Google Scholar 

  • Barnes LJ, Janssen FJ, Scheeren PJH, Versteegh JH & Koch RO (1991) Simultaneous microbial removal of sulphate and heavy metals from wastewater. Trans. Instn. Metall. (Sect. C: Mineral Process Extr. Metal) 101: C183-189

    Google Scholar 

  • Buisman CNJ, Geraats BG, Ijspeert P & Lettinga G (1990) Optimization of sulphur production in a biotechnological sulphide-removing reactor. Biotech. Bioeng. 35: 50–56

    Google Scholar 

  • Clancy PB, Venkataraman N & Lynd LR (1992) Biochemical inhibition of sulfate reduction in batch and continuous anaerobic digesters. Wat. Sci. Tech. 25: 51–60

    Google Scholar 

  • Colleran E, Finnegan S & O'Keeffe RB (1994) Anaerobic digestion of high sulphate-containing wastewater from the industrial production of citric acid. Wat. Sci. Tech. 30: 263–273

    Google Scholar 

  • Colleran E, Finnegan S & Lens P (1995) Anaerobic treatment of sulphate–containing waste streams. Antonie van Leeuwenhoek 67: 29–46

    Google Scholar 

  • Deswaef S, Salmon T, Hiligsmann S, Taillieu X, Milande N, Thonart Ph & Crine M (1996) Treatment of gypsum wastewater in a two stage anaerobic reactor. Wat. Sci. Tech. 34: 367–374

    Google Scholar 

  • Field JA, Stams AJM, Kato M & Schraa G (1995). Enhanced biodegradation of aromatic pollutants in cocultures of anaerobic and aerobic consortia. Antonie van Leeuwenhoek 67: 47–77

    Google Scholar 

  • Gadd GM & White C (1993) Microbial treatment of metal pollution– a working biotechnology? Tibtech 11: 353–359

    Google Scholar 

  • Garuti G, Dohanyos M & Tilche A (1992) Anaerobic-aerobic combined process for the treatment of sewage with nutrient removal: the ananox process. Wat. Sci. Tech. 25: 383–394

    Google Scholar 

  • Gommers PJF, Bijleveld W & Kuenen JG (1988) Simultaneous sulfide and acetate oxidation in a denitrifying fluidized bed reactor– I. Start-up and reactor performance. Wat. Res. 22: 1075–1083

    Google Scholar 

  • Gupta A, Flora JRV, Gupta M, Sayles GD & Suidan MT (1994) Methanogenesis and sulfate reduction in chemostats – I. kinetic studies and experiments. Wat. Res. 28: 781–793

    Google Scholar 

  • Hao OJ, Chen JM, Huang L & Buglass RL (1996) Sulfate-reducing bacteria. Crit. Rev. Env. Sci. Technol. 26: 155–187

    Google Scholar 

  • Harada H, Uemura S & Momonoi K (1994) Interactions between sulphate-reducing bacteria and methane-producing bacteria in UASB reactors fed with low strength wastes containing different levels of sulfate. Wat. Res. 28: 355–367

    Google Scholar 

  • Hoeks FWJMM, Ten Hoopen HJG, Roels JA & Kuenen JG (1984) Anaerobic treatment of acid water (methane production in a sulfate rich environment). Progr. Ind. Microbiol. 20: 113–119

    Google Scholar 

  • Hooper AB & Terry KR (1973) Specific inhibitors of ammonia oxidation in Nitrosomonas. J. Bacteriol. 115: 480–485

    Google Scholar 

  • Isa Z, Grusenmeyer S & Verstraete W (1986a) Sulfate reduction relative to methane production in high-rate anaerobic digestion: Technical aspects. Appl. Environ. Microbiol. 51: 572–579

    Google Scholar 

  • Isa Z, Grusenmeyer S & Verstraete W (1986b) Sulfate reduction relative to methane production in high-rate anaerobic digestion: Microbiological aspects. Appl. Environ. Microbiol. 51: 580–587

    Google Scholar 

  • Janssen AJH, Ma SC, Lens P & Lettinga G (1997) Performance of a sulphide oxidizing expanded bed reactor with a spatially separated aeration unit. Biotech. Bioeng. 53: 32–40

    Google Scholar 

  • Jensen AB & Webb C (1995) Treatment of H2S-containing gases: a review of microbiological alternatives. EnzymeMicrob. Technol. 17: 2–10

    Google Scholar 

  • Kaufman EN, Little MH & Selvaraj PT (1996) Recycling of FGD gypsum to calcium carbonate and elemental sulfur using mixed sulfate-reduing bacteria with sewage digest as a carbon source. J. Chem. Tech. Biotechnol. 66: 365–374

    Google Scholar 

  • Kim BW, Kim EH, Lee SC & Chang HN (1993) Model-based control of feed rate and illuminance in a photosynthetic fed-batch reactor for H2S removal. Bioprocess Eng. 8: 263–269

    Google Scholar 

  • Koster IW, Rinzema A, de Vegt AL & Lettinga G (1986) Sulfide inhibition of the methanogenic activity of granular sludge at different pH levels. Wat. Res. 12: 1561–1567

    Google Scholar 

  • Kuenen JG, Jorgenson BB & Revsbech NP (1986) Oxygen microprofiles of trickling filter biofilms. Wat. Res. 20: 1589–1598

    Google Scholar 

  • Lens P, Massone A, Rozzi A & Verstraete W (1995a) Effect of sulfate concentration and scraping on aerobic fixed film reactors. Wat. Res. 29: 857–870

    Google Scholar 

  • Lens P, De Poorter M-P, Cronenberg CC & Verstraete WH (1995b) Sulfate reducing and methane producing bacteria in aerobic wastewater treatment. Wat. Res. 29: 871–880

    Google Scholar 

  • Lens P, Visser A, Janssen AJH, Hulshoff Pol LW & Lettinga G (1998a) Biotechnological treatment of sulfate rich wastewater. Crit. Rev. Env. Sci. Technol. 28: 41–88

    Google Scholar 

  • Lens P, van den Bosch M, Hulshoff Pol L & Lettinga G (1998b) The use of staged sludge bed reactors for the treatment of sulfate rich wastewaters. Wat. Res. 32: 1178–1192

    Google Scholar 

  • Lettinga G. (1995) Anaerobic digestion and wastewater treatment systems. Antonie van Leeuwenhoek 67: 3–28

    Google Scholar 

  • Maree JP, Hulse G, Dods D & Schutte CE (1991) Pilot plant studies on biological sulphate removal from industrial effluent. Wat. Sci. Tech. 23: 1293–1300

    Google Scholar 

  • McCartney DM & Oleszkiewicz JA (1991) Sulfide inhibition of anaerobic degradation of lactate and acetate. Wat. Res. 25: 203–209

    Google Scholar 

  • ____ (1993) Competition between methanogens and sulfate reducers: effect of COD: sulfate ratio and acclimation. Wat. Environ. Res. 65: 655–664

    Google Scholar 

  • McFarland MJ & Jewell WJ (1989) In situ control of sulfide emission during thermophilic anaerobic digestion process. Wat. Res. 23: 1571–1577

    Google Scholar 

  • Middleton AG & Lawrence AW (1977) Kinetics of microbial sulfate reduction. J. Wat. Pollut. Control Fed. 229: 1659–1670

    Google Scholar 

  • Mulder A (1984) The effects of high sulfate concentrations on the methane fermentation of waste water. Progr. Ind. Microbiol. 20: 133–143

    Google Scholar 

  • Nedwell DB & Reynolds PJ (1996) Treatment of landfill leachate by methanogenic and sulphate-reducing digestion. Wat. Res. 30: 21–28

    Google Scholar 

  • Oleszkiewicz JA, Marstaller T & McCartney DM (1989) Effects of pH on sulfide toxicity to anaerobic processes. Environ. Technol. Lett. 10: 815–822

    Google Scholar 

  • Omil F, Méndez R & Lema JM (1995) Anaerobic treatment of saline wastewaters under high sulfide and ammonia content. Biores. Technol. 54: 269–278

    Google Scholar 

  • Omil F, Lens P, Hulshoff Pol L & Lettinga G (1996) Effect of upward velocity and sulfide concentration on volatile fatty acid degradation in a sulphidogenic granular sludge reactor. Process Biochem. 31, 699–710

    Google Scholar 

  • Omil F, Oude Elferink SJWH, Lens P, Hulshoff Pol L & Lettinga G (1997a) Effect of the inoculation with Desulforhabdus amnigenus and pH or O2 shocks on the competition between sulfate reducing and methanogenic bacteria in an acetate fed UASB reactor. Biores. Technol. 60: 113–122

    Google Scholar 

  • Omil F, Bakker CD, Hulshoff Pol LW & Lettinga G (1997b) The effect of pH and low temperature shocks on the competition between sulphate reducing and methane producing bacteria in UASB reactors. Environ. Technol. 18: 255–264

    Google Scholar 

  • Omil F, Lens P, Visser A, Hulshoff Pol LW & Lettinga G (1998) Long term competition between sulfate reducing and methanogenic bacteria in UASB reactors treating volatile fatty acids. Biotech. Bioeng. 57: 676–685

    Google Scholar 

  • Oude Elferink SJWH, Visser A, Hulshoff Pol LW & Stams AJM (1994) Sulfate reduction in methanogenic bioreactors. FEMS Microbiol. Rev. 15: 119–136

    Google Scholar 

  • Oude Elferink SJWH, Maas RN, Harmsen HJM & Stams AJM (1995) Desulforhabdus amnigenus gen.nov. sp.nov., a sulfate reducer isolated from anaerobic granular sludge. Arch. Microbiol. 164: 119–124

    Google Scholar 

  • Oude Elferink SJWH, Akkermans-van Vliet WM, Bogte JJ & Stams AJM (1998a) Desulfobacca acetoxidans gen. nov. sp. nov., a novel acetate-degrading sulfate reducer isolated from sulfidogenic sludge. Int. J. Syst. Bacteriol.: in press

  • Oude Elferink SJWH, Luppens SBI, Marcelis CLM & Stams AJM (1998b) Kinetics of acetate utilization by two sulfate reducers isolated from anaerobic granular sludge. Appl. Environ. Microbiol. 64: 2301–2303

    Google Scholar 

  • Overmeire A, Lens P & Verstraete W (1994) Mass transfer limitation of sulfate in methanogenic aggregates. Biotech. Bioeng. 44: 387–391

    Google Scholar 

  • Polprasert C & Haas CN (1995) Effect of sulfate on anaerobic processes fed with dual substrates. Wat. Sci. Tech. 31: 101–107

    Google Scholar 

  • Rebac S, Visser A, Gerbens S, van Lier JB, Stams AJM & Lettinga G (1996) The effect of sulphate on propionate and butyrate degradation in a psychrophilic anaerobic expanded granular sludge bed (EGSB) reactor. Environ. Technol. 17: 997–1005

    Google Scholar 

  • Rintala J, Sanz Martin JL & Lettinga G (1991) Thermophilic anaerobic treatment of sulfate-rich pulp and paper integrate process water. Wat. Sci. Tech. 24: 149–160

    Google Scholar 

  • Rintala J & Lettinga G (1992) Effects of temperature elevation from37 to 55 °C on anaerobic treatment of sulfate rich acidified wastewaters. Environ. Technol. 13: 801–812

    Google Scholar 

  • Rinzema A & Lettinga G (1988) Anaerobic treatment of sulfate containing waste water. In: Wise D.L. (Ed) Biotreatment systems. Vol III (pp. 65–109). CRC Press Inc., Boca Raton, USA

    Google Scholar 

  • Särner E (1990) Removal of sulphate and sulphite in an anaerobic trickling (ANTRIC) filter. Wat. Sci. Tech. 22: 395–404

    Google Scholar 

  • Scheeren PJH, Koch RO, Buisman CJN, Barnes LJ & Versteegh JH (1991) New biological treatment plant for heavy metal contaminated groundwater. Trans. Instn Min. Metall. (Sect. C: Mineral Process. Extr. Metall.) 101: C190-C199

    Google Scholar 

  • Shin HS, Jung JY, Bae BU & Paik BC (1995) Phase-separated anaerobic toxicity assays for sulfate and sulfide. Wat. Environ. Res. 67: 802–806

    Google Scholar 

  • Stucki G, Hanselmann KW & Hürzeler A (1993) Biological sulfuric acid transformation: reactor design and process optimization. Biotech. Bioeng. 41: 303–315

    Google Scholar 

  • Takahashi M & Kyosai S (1991) Pilot plant study on microaerobic self-granulated sludge process (multi-stage reversing-flow bioreactor: MRB). Wat. Sci. Tech. 23: 973–980

    Google Scholar 

  • Tanimoto Y, Tasaki M, Okamura K, Yamaguchi M & Minami K (1989) Screening growth inhibitors of sulfate-reducing bacteria and their effects on methane fermentation. J. Ferment. Bioeng. 68: 353–359

    Google Scholar 

  • Tichy R, Lens P, Grotenhuis JTC & Bos P (1998) Solid-state reduced sulfur compounds: environmental aspects and bioremediation. Crit. Rev.Environ. Sci.Technol. 28: 1–40

    Google Scholar 

  • Tilche A, Bortone G, Forner G, Indulti M, Stante L & Tesini O (1994) Combination of anaerobic digestion and denitrification in a hybrid upflow anaerobic filter integrated in a nutrient removal plant. Wat. Sci. Tech. 30: 405–414

    Google Scholar 

  • Van den Ende FP, Meier J & Van Gemerden H (1997) Syntrophic growth of sulfate–reducing bacteria and colorless sulfur bacteria during oxygen limitation. FEMS Microbiol. Ecol. 23: 65–80

    Google Scholar 

  • van der Hoek JP, Latour PJM & Klapwijk A (1988) Effect of hydraulic residence time on microbial sulfide production in an upflow sludge blanket denitrifcation reactor fed with methanol. Appl. Microbiol. Biotechnol. 28: 493–499

    Google Scholar 

  • van Houten RT, Hulshoff Pol LW & Lettinga G (1994) Biological sulphate reduction using gas-lift reactors fed with hydrogen and carbon dioxide as energy and carbon source. Biotech. Bioeng. 44: 586–594

    Google Scholar 

  • van Houten RT, van der Spoel H, van Aelst AC, Hulshoff Pol LW & Lettinga G (1996) Biological sulfate reduction using synthesis gas as energy and carbon source. Biotech. Bioeng. 50: 136–144

    Google Scholar 

  • van Houten RT, Yun SY & Lettinga G (1997) Thermophilic sulphate and sulphite reduction in lab-scale gas-lift reactors using H2 and CO2 as energy and carbon source. Biotech. Bioeng. 55: 807–814

    Google Scholar 

  • Visser A, Gao Y & Lettinga G (1992) The anaerobic treatment of a synthetic sulfate containing wastewater under thermophilic (55 °C) conditions. Wat. Sci. Tech. 25: 193–202

    Google Scholar 

  • ____ (1993a) Effects of short-term temperature increases on the mesophilic anaerobic breakdown of sulfate containing synthetic wastewater. Wat. Res. 27: 541–550

    Google Scholar 

  • Visser A, Beeksma I, van der Zee F, Stams AJM & Lettinga G (1993b) Anaerobic degradation of volatile fatty acids at different sulfate concentrations. Appl. Microbiol. Biotechnol. 40: 549–556

    Google Scholar 

  • Visser A, Hulshoff Pol LW & Lettinga G (1996) Competition of methanogenic and sulfidogenic bacteria. Wat. Sci. Tech. 33: 99–110

    Google Scholar 

  • Watanabe T, Imaoka H & Kuroda M (1997) Neutralisation and sulfate removal of acidic water containing high strength sulfate ion by using electrodes immobilized sulfate reducing bacteria on the surface. In: Proceedings of the 8th international conference on Anaerobic Digestion. May 25–29 1997, Vol 3 (pp 397–400) Sendai, Japan.

    Google Scholar 

  • Widdel F (1988) Microbiology and ecology of sulfate-and sulfur reducing bacteria. In: Zehnder A.J.B. (Ed) Biology of Anaerobic Microorganisms. (pp. 469–586) John Wiley & Sons, New York

    Google Scholar 

  • Yadav VK & Archer DB (1989) Sodium molybdate inhibits sulphate reduction in the anaerobic treatment of high sulphate molasses wastewater. Appl. Microbiol. Biotechnol. 31: 103–106

    Google Scholar 

  • Yoda M, Kitagawa M & Miyayi Y (1987) Long term competition between sulfate-reducing and methane-producing bacteria in anaerobic biofilm. Wat. Res. 21: 1547–1556

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hulshoff Pol, L.W., Lens, P.N., Stams, A.J. et al. Anaerobic treatment of sulphate-rich wastewaters. Biodegradation 9, 213–224 (1998). https://doi.org/10.1023/A:1008307929134

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008307929134

Navigation