Skip to main content
Log in

Restrained molecular dynamics of solvated duplex DNA using the particle mesh Ewald method

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Restrained and unrestrained aqueous solution molecular dynamics simulations applying the particle mesh Ewald (PME) method to DNA duplex structures previously determined via in vacuo restrained molecular dynamics with NMR-derived restraints are reported. Without experimental restraints, the DNA decamer, d(CATTTGCATC)⋅d(GATGCAAATG) and trisdecamer, d(AGCTTGCCTTGAG)⋅d(CTCAAGGCAAGCT), structures are stable on the nanosecond time scale and adopt conformations in the B-DNA family. These free DNA simulations exhibit behavior characteristic of PME simulations previously performed on DNA sequences, including a low helical twist, frequent sugar pucker transitions, BI- BII(ε−ζ) transitions and coupled crankshaft (α−γ) motion. Refinement protocols similar to the original in vacuo restrained molecular dynamics (RMD) refinements but in aqueous solution using the Cornell et al. force field [Cornell et al. (1995) J. Am. Chem. Soc., 117, 5179–5197] and a particle mesh Ewald treatment produce structures which fit the restraints very well and are very similar to the original in vacuo NMR structure, except for a significant difference in the average helical twist. Figures of merit for the average structure found in the RMD PME decamer simulations in solution are equivalent to the original in vacuo NMR structure while the figures of merit for the free MD simulations are significantly higher. The free MD simulations with the PME method, however, lead to some sequence-dependent structural features in common with the NMR structures, unlike free MD calculations with earlier force fields and protocols. There is some suggestion that the improved handling of electrostatics by PME improves long-range structural aspects which are not well defined by the short-range nature of NMR restraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A. and Haak, J.R. (1984) J. Chem. Phys., 81, 3684–3690.

    Google Scholar 

  • Beveridge, D.L. and Ravishanker, G. (1994) Curr. Opin. Struct. Biol., 4, 246–255.

    Google Scholar 

  • Cheatham, T.E. and Kollman, P.A. (1996) J. Mol. Biol., 259, 434–444.

    Google Scholar 

  • Cheatham, T.E. and Kollman, P.A. (1998) Structure, Motion, Interaction and Expression of Biological Macromolecules, Proceedings of the Tenth Conversation, State University of New York, Albany, NY.

    Google Scholar 

  • Cheatham, T.E., Miller, J.L., Fox, T., Darden, T.A. and Kollman, P.A. (1995) J. Am. Chem. Soc., 117, 4193–4194.

    Google Scholar 

  • Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Kenneth M. Merz, J., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W. and Kollman, P.A. (1995) J. Am. Chem. Soc., 117, 5179–5197.

    Google Scholar 

  • Darden, T.A., York, D. and Pedersen, L.G. (1993) J. Chem. Phys., 98, 10089–10092.

    Google Scholar 

  • Essman, U., Perera, L., Berkowitz, M., Darden, T., Lee, H. and Pedersen, L. (1995) J. Chem. Phys., 103, 8577–8593.

    Google Scholar 

  • Franklin, R.E. and Gosling, R.G. (1953) Acta. Crystallogr., 6, 673–677.

    Google Scholar 

  • James, T.L. (1991) Curr. Opin. Struct. Biol., 1, 1042–1053.

    Google Scholar 

  • Lavery, R. and Sklenar, H. (1989) J. Biomol. Struct. Dyn., 6, 655–667.

    Google Scholar 

  • Liu, H., Spielmann, H., Ulyanov, N. and Wemmer, D.E. (1995) J. Biomol. NMR, 6, 390–402.

    Google Scholar 

  • Louise-May, S., Auffinger, P. and Westhof, E. (1996) Curr. Opin. Struct. Biol., 6, 289–298.

    Google Scholar 

  • Mujeeb, A., Kerwin, S.M., Kenyon, G.L. and James, T.L. (1993) Biochemistry, 32, 13419–13431.

    Google Scholar 

  • Ravishanker, G., Swaminathan, S., Beveridge, D.L., Lavery, R. and Sklenar, H. (1989) J. Biomol. Struct. Dyn., 6, 669–699.

    Google Scholar 

  • Rhodes, D. and Klug, A. (1980) Nature, 286, 573–578.

    Google Scholar 

  • Roitberg, A. and Elber, R. (1991) J. Chem. Phys., 95, 9277–9286.

    Google Scholar 

  • Schmitz, U. and James, T.L. (1995) Methods Enzymol., 261, 3–44.

    Google Scholar 

  • Simmerling, C., Miller, J. and Kollman, P.A. (1998) J. Am. Chem. Soc., 120, 7149–7155.

    Google Scholar 

  • Ulyanov, N.B., Gorin, A.A., Zhurkin, V.B., Chen, B.-C., Sarma, M.H. and Sarma, R.H. (1992) Biochemistry, 31, 3918–3930.

    Google Scholar 

  • Ulyanov, N.B., Schmitz, U., Kumar, A. and James, T.L. (1995) Biophys. J., 68, 13–24.

    Google Scholar 

  • Wang, A.H., Quigley, G.J., Kolpak, F.J., Crawford, J.L., van Boom, J.H., van der Marel, G. and Rich, A. (1979) Nature, 283, 680–686.

    Google Scholar 

  • Weisz, K., Shafer, R.H., Egan, W. and James, T.L. (1992) Biochemistry, 31, 7477–7487.

    Google Scholar 

  • Weisz, K., Shafer, R.H., Egan, W. and James, T.L. (1994) Biochemistry, 33, 354–356.

    Google Scholar 

  • York, D.M., Darden, T.A. and Pedersen, L.G. (1993) J. Chem. Phys., 99, 8345–8348.

    Google Scholar 

  • Young, M.A., Ravishanker, G. and Beveridge, D.L. (1997) Biophys. J., 73, 2313–2336.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konerding, D.E., Cheatham, T.E., Kollman, P.A. et al. Restrained molecular dynamics of solvated duplex DNA using the particle mesh Ewald method. J Biomol NMR 13, 119–131 (1999). https://doi.org/10.1023/A:1008353423074

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008353423074

Navigation