Skip to main content
Log in

The NMR solution structure and characterization of pH dependent chemical shifts of the β-elicitin, cryptogein

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The NMR structure of the 98 residue β-elicitin, cryptogein, which induces a defence response in tobacco, was determined using 15N and 13C/15N labelled protein samples. In aqueous solution conditions in the millimolar range, the protein forms a discrete homodimer where the N-terminal helices of each monomer form an interface. The structure was calculated with 1047 intrasubunit and 40 intersubunit NOE derived distance constraints and 236 dihedral angle constraints for each subunit using the molecular dynamics program DYANA. The twenty best conformers were energy-minimized in OPAL to give a root-mean-square deviation to the mean structure of 0.82 Å for the backbone atoms and 1.03 Å for all heavy atoms. The monomeric structure is nearly identical to the recently derived X-ray crystal structure (backbone rmsd 0.86 Å for residues 2 to 97) and shows five helices, a two stranded antiparallel β-sheet and an Ω-loop. Using 1H,15N HSQC spectroscopy the pKa of the N- and C-termini, Tyr12, Asp21, Asp30, Asp72, and Tyr85 were determined and support the proposal of several stabilizing ionic interactions including a salt bridge between Asp21 and Lys62. The hydroxyl hydrogens of Tyr33 and Ser78 are clearly observed indicating that these residues are buried and hydrogen bonded. Two other tyrosines, Tyr47 and Tyr87, show pKa's > 12, however, there is no indication that their hydroxyls are hydrogen bonded. Calculations of theoretical pKa's show general agreement with the experimentally determined values and are similar for both the crystal and solution structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Archer, S.J., Ikura, M., Torchia, D.A. and Bax, A. (1991) J. Magn. Reson., 95, 636-641.

    Google Scholar 

  • Boissy, G., de la Fortelle, E., Kahn, R., Huet, J.-C., Bricogne, G., Pernollet, J.-C. and Brunie, S. (1996) Structure, 4, 1429-1439.

    Article  Google Scholar 

  • Bonnet, P., Bourdon, E., Ponchet, M., Blein, J.P. and Ricci, P. (1996) Eur. J. Plant Pathol., 102, 181-192.

    Article  Google Scholar 

  • Bouaziz, S., Van Heijenoort, C., Guittet, E., Huet, J.-C. and Pernollet, J.-C. (1994) Eur. J. Biochem., 33, 8188-8197.

    Google Scholar 

  • De Wit, P.J.G.M. (1992) Annu. Rev. Phytopathol., 30, 391-418.

    Article  Google Scholar 

  • Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J. and Bax, A. (1995) J. Biomol. NMR, 6, 277-293.

    Article  Google Scholar 

  • Dimitrov, R.A. and Chrichton, R.R. (1997) Proteins, 27, 576-596.

    Article  Google Scholar 

  • Dingley, A.J., MacKay, J.P., Chapman, B.E., Morris, M.B., Kuchel, P.W., Hambly, B.D. and King, G.F. (1995) J. Biomol. NMR, 6, 321-328.

    Article  Google Scholar 

  • Fefeu, S., Bouaziz, S., Huet, J.-C., Pernollet, J.-C. and Guittet, E. (1997) Protein Sci., 6, 2279-2284.

    Article  Google Scholar 

  • Fenn, M.E. and Coffey, M.D. (1984) Phytopathology, 74, 606-611

    Article  Google Scholar 

  • Fernández, C., Szyperski, T., Bruyère, T., Ramage, P., Mösinger, E. and Wüthrich, K. (1997) J. Mol. Biol., 266, 576-593.

    Article  Google Scholar 

  • Folmer, R.H.A., Hilbers, C.W., Konings, R.N.H. and Hallenga, K. (1995) J. Biomol. NMR, 5, 427-432.

    Article  Google Scholar 

  • Forman-Kay, J.D., Clore, G.M. and Gronenborn, A.M. (1992) Biochemistry, 31, 3442-3452.

    Article  Google Scholar 

  • Frenkiel, T., Bauer, C., Carr, M.D., Birdsall, B. and Feeney, J. (1990) J. Magn. Reson., 90, 420-425.

    Google Scholar 

  • Gayler, K.R., Popa, K.M., Maksel, D.M., Ebert, D.L. and Grant, B.R. (1997) Mol. Plant Pathol. On-Line http://www.bspp.org.uk/mppol/1997/0623gayler.

  • Grant, B.R., Ebert, D. and Gayler, K.R. (1996) Aust. Plant Pathol., 25, 148-157.

    Article  Google Scholar 

  • Güntert, P., Braun, W. and Wüthrich, K. (1991) J. Mol. Biol., 217, 517-530.

    Article  Google Scholar 

  • Güntert, P., Mumenthaler, C. and Wüthrich, K. (1997) J. Mol. Biol., 273, 283-298.

    Article  Google Scholar 

  • Huet, J.C., La Cear, J.P., Nespoulous, C. and Pernollet, J.C. (1995) Mol. Plant-Microbe Interactions, 8, 302-310.

    Google Scholar 

  • Ikura, M. and Bax, A. (1992) J. Am. Chem. Soc., 114, 2433-2440.

    Article  Google Scholar 

  • Johnson, B.A. and Blevins, R.A. (1994) J. Biomol. NMR, 4, 603-614.

    Article  Google Scholar 

  • Juffer, A.H., Argos, P. and Vogel, H.J. (1997) J. Phys. Chem. B, 101, 7664-7673.

    Article  Google Scholar 

  • Jones, D.A., Thomas, C.M., Hommon D'Kosack, K.E., Balint-Kurti, P.J. and Jones, J.D.G. (1994) Science, 266, 789-793.

    Article  ADS  Google Scholar 

  • Kamoun, S., Young, M., Glascock, C.B. and Tyler, B.M. (1993) Mol. Plant-Microbe Interactions, 6, 15-25

    Google Scholar 

  • Kay, L.E., Xu, G.-Y., Singer, A.U., Muhandiram, D.R. and Forman-Kay, J.D. (1993) J. Magn. Reson., 101, 333-337.

    Google Scholar 

  • Kooman-Gersmann, M., Honée, G., Bonnema, G. and De Wit, P.J.G.M. (1996) Plant Cell, 8, 929-938.

    Article  Google Scholar 

  • Koradi, R., Billeter, M. and Wüthrich, K. (1996) J. Mol. Graph, 14, 51-55.

    Article  Google Scholar 

  • Laskowski, R.A., MacArthur, M.W., Moss, D.S. and Thornton, J.M. (1993) J. Appl. Crystallogr., 26, 283-291.

    Article  Google Scholar 

  • Laskowski, R.A., Rullman, J.A.C., MacArthur, M.W., Kaptein, R. and Thornton, J.M. (1996) J. Biomol. NMR, 8, 477-486.

    Article  Google Scholar 

  • Luginbühl, P., Güntert, P., Billeter, M. and Wüthrich, K. (1996) J. Biomol. NMR, 8, 136-146.

    Article  Google Scholar 

  • Majumdar, A. and Zuiderweg, E.R.P. (1993) J. Magn. Reson., 102, 242-244.

    Article  Google Scholar 

  • Muhandiram, D.R. and Kay, L.E. (1994) J. Magn. Reson., 103, 203-216.

    Article  Google Scholar 

  • Nakamura, H. (1996) Q. Rev. Biophys., 29, 1-90.

    Article  Google Scholar 

  • Nespoulous, C. and Pernollet, J.-C. (1994) Int. J. Pept. Protein Res., 43, 154-159.

    Article  Google Scholar 

  • O'Donohue, M.J., Gousseau, H., Huet, J.-C., Tepfer, D. and Pernollet, J.-C. (1995) Plant Mol. Biol., 27, 577-586.

    Google Scholar 

  • Vogel, H.J. and Juffer, A.H. (1998) Theor. Chem. Acc. (in press).

  • Vuister, G.W. and Bax, A. (1993) J. Am. Chem. Soc., 115, 7772-7777.

    Article  Google Scholar 

  • Vuister, G.W., Kim, S.-J., Wu, C. and Bax, A. (1994) J. Am. Chem. Soc., 116, 9206-9210.

    Article  Google Scholar 

  • Zamyatnin, A.A. (1972) Prog. Biophys. Mol., 24, 803-813.

    Google Scholar 

  • Zhang, O., Kay, L.E., Olivier, J.P. and Forman-Kay, J.D. (1994) J. Biomol. NMR, 4, 845-858.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gooley, P.R., Keniry, M.A., Dimitrov, R.A. et al. The NMR solution structure and characterization of pH dependent chemical shifts of the β-elicitin, cryptogein. J Biomol NMR 12, 523–534 (1998). https://doi.org/10.1023/A:1008395001008

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008395001008

Navigation