Skip to main content
Log in

Microbial degradation of tannins – A current perspective

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Tannins are water-soluble polyphenolic compounds having wide prevalence in plants. Hydrolysable and condensed tannins are the two major classes of tannins. These compounds have a range of effects on various organisms – from toxic effects on animals to growth inhibition of microorganisms. Some microbes are, however, resistant to tannins, and have developed various mechanisms and pathways for tannin degradation in their natural milieu. The microbial degradation of condensed tannins is, however, less than hydrolysable tannins in both aerobic and anaerobic environments. A number of microbes have also been isolated from the gastrointestinal tract of animals, which have the ability to break tannin-protein complexes and degrade tannins, especially hydrolysable tannins. Tannase, a key enzyme in the degradation of hydrolysable tannins, is present in a diverse group of microorganisms, including rumen bacteria. This enzyme is being increasingly used in a number of processes. Presently, there is a need for increased understanding of the biodegradation of condensed tannins, particularly in ruminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adachi O, Watanabe M & Yamada H (1968) Studies on fungal tannase. II. Physico-chemical properties of the tannase of Aspergillus flavus.Agric. Biol. Chem. 32: 1079-1085.

    Google Scholar 

  • Adachi O, Watanabe M & Yamada H (1971) Studies on fungal tannase. III. Inhibition of tannase by diisopropylfluorophosphate. J. Ferment. Technol. 49: 230-234.

    Google Scholar 

  • Aoki K, Shinke R & Nishira H (1976a) Purification and some properties of the yeast tannase. Agric. Biol. Chem. 40: 79-85.

    Google Scholar 

  • Aoki K, Shinke R & Nishira H (1976b) Chemical composition and molecular weight of yeast tannase. Agric. Biol. Chem. 40: 297-302.

    Google Scholar 

  • Archambault J, Lacki K & Duvnjak Z (1996) Conversion of catechin and tannic acid by an enzyme preparation from Trametes versicolor.Biotechnol. Letters 18: 771-774.

    Google Scholar 

  • Bae HD, McAllister TA, Yanke J, Cheng KJ & Muir AD (1993) Effects of condensed tannins on endoglucanase activity and filter paper digestion by Fibrobacter succinogenes585. Appl. Environ. Microbiol. 59: 2132-2138.

    Google Scholar 

  • Bajpai B & Patil S (1996) Tannin acyl hydrolase activity of Aspergillus, Penicillium, Fusariumand Trichoderma.W. J. Microbiol. Biotechnol. 12: 217-220.

    Google Scholar 

  • Barthomeuf C, Regerat F & Pourrat H (1994) Production, purification and characterization of a tannase from Aspergillus nigerLCF 8. J. Ferment Technol. 77: 320-323.

    Google Scholar 

  • Barz W & Hosel W (1975) In: The Flavonoids (Eds. Harborne JB, Mabry TJ & Mabry H) pp. 916-969, Chapman & Hall, London.

    Google Scholar 

  • Berry DF, Francis AJ & Bollag JM (1987) Microbial metabolism of homocyclic and hetrocyclic aromatic compounds under anaerobic conditions. Microbiol. Rev. 51: 43-59.

    PubMed  Google Scholar 

  • Beverini M & Metche M (1990) Identification, purification and physicochemical properties of tannase of Aspergillus oryzae.Sci. des Aliments 10: 807-816.

    Google Scholar 

  • Bhat TK, Makkar HPS & Singh B (1996) Isolation of a tannin-protein complex degrading fungus from the faeces of hill cattle. Lett. Appl. Microbiol. 22: 257-258.

    PubMed  Google Scholar 

  • Bhat TK, Makkar HPS & Singh B (1997) Preliminary studies on tannin degradation by Aspergillus nigervan Tieghem MTCC 2425. Lett. Appl. Microbiol. 25: 22-23.

    Article  PubMed  Google Scholar 

  • Bradoo S, Gupta R & Saxena RK (1996) Screening of extracellular tannase-producing fungi:development of a rapid and simple plate assay. J. Gen. Appl. Microb. 42: 325-330.

    Google Scholar 

  • Bradoo S, Gupta R & Saxena RK (1997) Parametric optimization and biochemical regulation of extracellular tannase from Aspergillus japonicus.Process Biochem. 32: 135-139.

    Article  Google Scholar 

  • Brooker JD, O'Donovan LA, Skene IK, Clark K, Blackall L & Muslera P (1994) Streptococcus caprinussp. nov., a tannin-resistant ruminal bacterium from feral goats. Lett. Appl. Microbiol. 18: 313-318.

    Google Scholar 

  • Brown JP (1977) In: Critical Reviews in Food Science and Nutrition Vol. 8 (Ed. Furia TE) pp. 229-336, Chemical Rubber Co. Press, Boca Raton, Florida.

    Google Scholar 

  • Brune A & Schink B (1990) Pyrogallol-to-phloroglucinol conversion and other hydroxyl-transfer reactions catalyzed by cell-free extracts of Pelobacter acidigallici.J. Bacteriol. 172: 1070-1076.

    PubMed  Google Scholar 

  • Brune A & Schink B (1992) Phloroglucinol pathway in the strictly anaerobic Pelobacter acidigallici: fermentation of trihydroxybenzenes to acetate via triacetic acid. Arch. Microbiol. 157: 417-424.

    Google Scholar 

  • Cantarelli C, Brenna O, Giovanelli G & Rossi M (1989) Beverage stabilization through enzymic removal of phenolics. Food Biotech. 3: 203-213.

    Google Scholar 

  • Chatterjee R, Dutta A, Banerjee R & Bhattacharya BC (1996) Production of tannase by solid-state fermentation. Bioprocess Engg. 14: 159-162.

    Article  Google Scholar 

  • Deschamps AM, Mohudeau G, Conti M & Lebeault JM (1980) Bacteria degrading tannic acid and related compounds. J. Ferment Technol. 58: 93-97.

    Google Scholar 

  • Deschamps AM, Otuk G & Lebeault JM (1983) Production of tannase and degradation of chestnut tannins by bacteria. J. Ferment Technol. 61: 55–59.

    Google Scholar 

  • Deschamps AM & Lebeault JM (1984) Production of gallic acid from tara (Caesalpinia spinosa) tannin by bacterial strains. Biotechnol. Letters 6: 237-242.

    Google Scholar 

  • Deschamps AM (1989) Microbial degradation of tannins and related compounds. In: Lewis NG and Paice MG (Eds) Plant Cell Wall Polymers Biogenesis and Biodegradation (pp. 559-566).

  • Dhar SC & Bose SM (1964) Purification, crystallization and physico-chemical properties of tannase from Aspergillus niger.Leather Sci. 11: 27-38.

    Google Scholar 

  • Doi S, Shinmyo A, Enatsu T & Terui G (1973) Growth associated production of tannase by a strain of Aspergillus oryzae.J. Ferment. Technol. 61: 768-774.

    Google Scholar 

  • Evans WC & Fuchs G (1988) Anaerobic degradation of aromatic compounds. Ann. Rev. Microbiol. 42: 289-317.

    Article  Google Scholar 

  • Farias GM, Elkins JR & Griffin GJ (1992) Tannase activity associated with growth of Cryphonectria parasiticaon American and Chinese chestnut extracts and properties of the enzyme. Eur. J. Forest Pathol. 22: 392-402.

    Google Scholar 

  • Farias GM, Gorbea C, Elkins JR & Griffin GJ (1994) Purification, characterization, and substrate relationships of the tannase from Cryphonectria parasitica.Physiol. Mol. Plant Pathol. 44: 51-63.

    Google Scholar 

  • Fewson CA (1981) In: Microbial degradation of xenobiotics and recalcitrant compounds, FEMS Symposium No.12 (Eds. Leisinger T, Hutter R, Cook AM & Nuesch J) pp. 141-180, Academic Press, London.

    Google Scholar 

  • Field JA & Lettinga G (1987) The methanogenic toxicity and anaerobic degradability of a hydrolyzable tannin. Water Res. 21: 367-374.

    Article  Google Scholar 

  • Field JA & Lettinga G (1989) The effect of oxidative coloration on the methanogenic toxicity and anaerobic biodegradability of phenols. Biol. Wastes 29: 161-179.

    Article  Google Scholar 

  • Field JA & Lettinga G (1992a) Toxicity of tannic compounds to microorganisms. In: Hemingway RW & Laks E (Eds) Plant Polyphenols: Synthesis, Properties, Significance (pp. 673–692). Plenum Press, New York.

    Google Scholar 

  • Field JA & Lettinga G (1992b) Biodegradation of tannins. In: Sigel H (Ed) Metal Ions in Biological Systems Volume 28. Degradation of environmental pollutants by microorganisms and their metalloenzymes. (pp. 61-97). Marcel Dekker Inc, New York.

    Google Scholar 

  • Fillipich LJ, Zhu J & Oelrichs P, Alsalami MT, Doig AJ, Cao GR & English PB (1991) Hepatotoxic and nephrotoxic principles in Terminalia oblongata.Res. Vet. Sci. 50: 170-177.

    PubMed  Google Scholar 

  • Fuchs G, Mohamed MES, Altenschmidt U, Koch J, Lack A, Brackmann R, Lochmeyer C & Oswald B (1994) Biochemistry of anaerobic biodegradation of aromatic compounds. In: Ratledge C (Ed) Biochemistry of Microbial Degradation (pp. 513-553). Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Gamble GR, Akin DE, Makkar HPS & Becker K (1996) Biological degradation of tannins in sericea lespedeza (Lespedeza cuneata) by the white rot fungi Ceriporiopsis subvermisporaand Cyathus stercoreusanalysed by solid state 13C nuclear magnetic resonance spectroscopy. Appl. Environ. Microbiol. 62: 3600-3604.

    PubMed  Google Scholar 

  • Ganga PS, Nandy SC & Santappa M (1977) Effect of environmental factors on the production of fungal tannase. Leather Sci. 24: 8-16.

    Google Scholar 

  • Garg SK, Makkar HPS, Nagal KB, Sharma SK, Wadhwa DR & Singh B (1992) Toxicological investigations into oak (Quercus incana) leaf poisoning in cattle. Vet. Human Toxicol. 34: 161-164.

    Google Scholar 

  • Gibson DT & Subramanian V (1984) Microbial degradation of aromatic compounds. In: Gibson DT (Ed) Microbial degradation of organic compounds (pp. 181-252). Marcel Dekker Inc., New York.

    Google Scholar 

  • Graham HN (1992) Green tea composition, consumption and polyphenol chemistry. Prev. Med. 21: 334-350.

    Article  PubMed  Google Scholar 

  • Gupta R, Bradoo S & Saxena RK (1997) Rapid purification of extracellular tannase using polyethylene glycol-tannic acid complex. Lett. Appl. Microbiol. 24: 253-255.

    Article  Google Scholar 

  • Hadi TA, Banerjee R & Bhattacharya BC (1994) Optimization of tannase biosynthesis by a newly isolated R. oryzae.Bioprocess Engg. 11, 239-242.

    Article  Google Scholar 

  • Haslam E (1989) Plant polyphenols - vegetable tannins revisited. Cambridge University Press, Cambridge.

    Google Scholar 

  • Haslam E & Stangroom JE (1966) The esterase and depside activities of the tannase. Biochem. J. 99: 28-31.

    PubMed  Google Scholar 

  • Haslam E & Tanner RJN (1970) Spectrophotometric assay of tannase activity. Phytochemistry 9: 2305-2309.

    Article  Google Scholar 

  • Hatamoto O, Watarai T, Kikuchi M, Mizusawa K & Sekine H (1996) Cloning and sequencing of the gene encoding tannase and a structural study of the tannase subunit from Aspergillus oryzae.Gene 175: 215-221.

    Article  PubMed  Google Scholar 

  • Iibuchi S, Minoda Y & Yamada K (1967) Studies on tannin acyl hydrolase of microorganisms. Part II. A new method determining the enzyme activity using the change of ultra violet absorption. Agric. Biol. Chem. 31: 513-518.

    Google Scholar 

  • Iibuchi S, Minoda Y & Yamada K (1968) Studies on tannin acyl hydrolase of microorganisms. Part III. Purification of the enzyme and some properties of it. Agric. Biol. Chem. 32: 803-809.

    Google Scholar 

  • Iibuchi S, Minoda Y & Yamada, K ( 1972) Hydrolyzing pathway, substrate specificity and inhibition of tannin acyl hydrolase of Asp. oryzaeNo.7. Agric. Biol. Chem. 37: 1553-1562.

    Google Scholar 

  • Jones GA, McAllister TA, Muir AD & Cheng, KJ (1994) Effects of sainfoin (Onobrychis viciifoliaScop.) condensed tannins on growth and proteolysis by four strains of ruminal bacteria. Appl. Environ. Microbiol. 60: 1374-1378.

    Google Scholar 

  • Kaiser JP & Hanselmann KW (1982) Fermentative metabolism of substituted monoaromatic compounds by a bacterial community from anaerobic sediments. Arch. Microbiol. 133: 185-194.

    Google Scholar 

  • Knudson L (1913) Tannic acid fermentation. J. Biol. Chem. 14: 159-202.

    Google Scholar 

  • Kumar R & Singh M (1984) Tannins: their adverse role in ruminant nutrition. J. Agric. Food Chem. 32: 447-453.

    Google Scholar 

  • Krumholz LR & Bryant MP (1986a) Syntrophococcus sucromutanssp. nov. gen. nov. uses carbohydrates as electron donors and formate, methoxybenzenoids or Methanobrevibacteras electron acceptor systems. Arch. Microbiol. 143: 313-318.

    Google Scholar 

  • Krumholz LR & Bryant MP (1986b) Eubacterium oxidoreducenssp. nov. requiring H2 or formate to degrade gallate, pyrogallol, phloroglucinol and quercetin. Arch. Microbiol. 144: 8-14.

    Google Scholar 

  • Krumholz LR, Crawford RL, Hemling ME & Bryant MP (1987) Metabolism of gallate and phloroglucinol in Eubacterium oxidoreducensvia 3-hydroxy-5-oxohexanoate. J. Bacteriol. 169: 1886-1890.

    PubMed  Google Scholar 

  • Krumholz LR & Bryant MP (1988) Characterization of the pyrogallol-phloroglucinol isomerase of Eubacterium oxidoreducens.J. Bacteriol. 170: 2472-2479.

    PubMed  Google Scholar 

  • Lane RW, Yamakoshi J, Kikuchi M, Mizusawa K, Henderson L & Smith M (1997) Safety evaluation of tannase enzyme preparation derived from Aspergillus oryzae.Food Chem. Toxicol. 35: 207-212.

    Article  PubMed  Google Scholar 

  • Lekha PK & Lonsane BK (1994) Comparative titres, location and properties of tannin acyl hydrolase produced by Aspergillus nigerPKL 104 in solid-state, liquid surface and submerged fermentations. Process Biochem. 29: 497-503.

    Article  Google Scholar 

  • Lekha PK & Lonsane BK (1997) Production and application of tannin acyl hydrolase: state of the art. Adv. Appl. Microbiol. 44: 215-260.

    PubMed  Google Scholar 

  • Lewis JA & Starkey RL (1969) Decomposition of plant tannins by some soil microorganisms. Soil Sci. 107: 235-241.

    Google Scholar 

  • Lorusso L, Lacki K & Duvnjak Z (1996) Decrease of tannin content in canola meal by an enzyme preparation from Trametes versicolor.Biotechnol. Lett. 18: 309-314.

    Article  Google Scholar 

  • Mahadevan A & Muthukumar G (1980) Aquatic microbiology with reference to tannin degradations. Microbiologia 72: 73-79.

    Google Scholar 

  • Mahadevan A & Sivaswamy SN (1985) Tannins and microorganisms. In: Mukerji KG, Pathak NC & Singh VP (Eds) Frontiers in applied microbiology. (pp. 327-347). Print House, Lucknow.

    Google Scholar 

  • Makkar HPS, Singh B & Kamra DN (1994) Biodegradation of tannins in oak (Quercus incana) leaves by Sporotrichum pulverulentum.Lett. Appl. Microbiol. 18: 39-41.

    Google Scholar 

  • Makkar HPS, Singh B & Dawra RK (1988) Effect of tannin-rich leaves of oak (Quercus incana) on various microbial enzyme activities of the bovine rumen. Brit. J. Nutr. 60: 287-296.

    PubMed  Google Scholar 

  • Martin SA & Akin DE (1988) Effect of phenolic monomers on the growth and β-glucosidase activity of Bacteroides ruminicolaand on the carboxymethylcellulase, β-glucosidase, and xylanase activities of Bacteroides succinogenes.Appl. Environ. Microbiol 54: 3600-3604.

    Google Scholar 

  • McLeod MN (1974) Plant tannins - their role in forage quality. Nutr. Abstr. Rev. 44: 803-815.

    Google Scholar 

  • Mueller-Harvey I, Reed JD & Hartley RD (1987) Characterization of phenolic compounds, including tannins of ten Ethiopian browse species by high performance liquid chromatography. J.Sci. Food Agric. 39: 1-14.

    Google Scholar 

  • Mueller-Harvey I & McAllan AB (1992) Tannins: their biochemistry and nutritional properties. Adv. Plant Cell Biochem. Biotechnol. 1: 151-217.

    Google Scholar 

  • Murdiati TB, McSweeney CS & Lowry JB (1992) Metabolism in sheep of gallic acid, tannic acid, and hydrolysable tannins from Terminalia oblongata.Aust. J. Agric. Res. 43: 1307-1312.

    Google Scholar 

  • Nelson KA, Schofield P & Zinder S (1995) Isolation and characterization of an anaerobic ruminal bacterium capable of degrading hydrolysable tannins. Appl. Environ. Microbiol. 61: 3293-3298.

    PubMed  Google Scholar 

  • Nishira H (1961) Studies on tannin decomposing enzyme of molds. X. Tannase fermentation by molds in liquid culture with phenolic substances. J. Ferment. Technol. 39: 137-146.

    Google Scholar 

  • Osawa R (1990) Formation of a clear zone on tannin-treated brain heart infusion agar by a Streptococcussp. isolated from feces of koalas. Appl. Environ. Microbiol. 56: 829-831.

    PubMed  Google Scholar 

  • Osawa R (1992) Tannin-protein complex-degrading enterobacteria isolated from the alimentary tracts of koalas and a selective medium for their enumeration. Appl. Environ. Microbiol. 58: 1754-1759.

    PubMed  Google Scholar 

  • Osawa R & Mitsuoka T (1990) Selective medium for enumeration of tannin-protein complex-degrading Streptococcusspp. in feces of koalas. Appl. Environ. Microbiol. 56: 3609-3611.

    Google Scholar 

  • Osawa R & Sly L (1992) Occurence of tannin-protein complex-degrading Streptococcussp. in feces of various animals. System. Appl. Microbiol. 15: 144-147.

    Google Scholar 

  • Otuk G & Deschamps AM (1983) Degradation of condensed tannin by several types of yeasts. Mycopathologia 83: 107-111.

    Google Scholar 

  • Patel TR, Jure KG & Jones GA (1981) Catabolism of phloroglucinol by the rumen anaerobe Coprococcus.Appl. Environ. Microbiol. 42: 1010-1017.

    Google Scholar 

  • Patel TR, Hameed N & Martin AM (1990) Initial steps of phloroglucinol metabolism in Penicillium simplicissimum.Arch. Microbiol. 153: 438-443.

    Article  Google Scholar 

  • Perez-Maldonado RA & Norton BW (1996) Digestion of 14C-labelled condensed tannins from Desmodium intortumin sheep and goats. Brit. J. Nutr. 76: 501-513.

    PubMed  Google Scholar 

  • Porter LJ (1994) Flavans and proanthocyanidins. In: Harborne JB (Ed.) The Flavanoids Advances in Research since 1986 (pp. 23-48) Chapman and Hall, London.

    Google Scholar 

  • Rajakumar GS & Nandy SC (1983) Isolation, purification, and some properties of Penicillium chrysogenumtannase. Appl. Environ. Microbiol. 46: 525-527.

    Google Scholar 

  • Reed JD (1995) Nutritional toxicology of tannins and related polyphenols in forage legumes. J. Anim. Sci. 73: 1516-1528.

    PubMed  Google Scholar 

  • Saxena RK, Sharmila P & Singh VP (1995) Microbial degradation of tannins. In: Singh VP (Ed) Biotransformations: Microbial degradation of health-risk compounds. Progress in Industrial Microbiology, Vol. 32 (pp. 259-270). Elsevier Science Publishers B. V. Amsterdam.

    Google Scholar 

  • Scalbert A (1991) Antimicrobial properties of tannins. Phytochemistry 30: 3875-3883.

    Article  Google Scholar 

  • Schink B & Pfennig N (1982) Fermentation of trihydroxybenzenes by Pelobacter acidigallicigen. nov. sp. nov., a new strictly anaerobic, non-sporeforming bacterium. Arch. Microbiol. 133: 195-201.

    Google Scholar 

  • Selinger LB, Forsberg CW & Cheng KJ (1996) The rumen: a unique source of enzymes for enhancing livestock production. Anaerobe 2: 263-284.

    Article  Google Scholar 

  • Skene IK & Brooker JD (1995) Characterization of tannin acylhydrolase activity in the ruminal bacterium Selenomonas ruminantium.Anaerobe, 1: 321-327.

    Article  Google Scholar 

  • Spencer CM, Cai Y, Martin R, Gaffney SH, Goulding PN, Magnolato D, Lilley TH & Haslam E (1988). Polyphenol complexation- some thoughts and observations. Phytochemistry 27: 2397-2409.

    Article  Google Scholar 

  • Suseela RG & Nandy SC (1985) Decomposition of tannic acid and gallic acid by Penicillium chrysogenum.Leather Sci. 32: 278-280.

    Google Scholar 

  • Thomas RL & Murtagh K (1985) Characterization of tannase (EC 3.1.1.20) activity in tea extracts. J. Food Sci. 50: 1126-1129.

    Google Scholar 

  • Tsai CG & Jones GA (1975) Isolation and identification of rumen bacteria capable of anaerobic phloroglucinol degradation. Can. J. Microbiol. 21: 794-801.

    PubMed  Google Scholar 

  • Tsai CG, Gates DM, Ingledew WM & Jones GA (1976) Products of anaerobic phloroglucinol degradation by Coprococcussp. Pe1 5. Can. J. Microbiol. 22: 159-164.

    PubMed  Google Scholar 

  • Tschech A & Schink B (1985) Fermentative degradation of resorcinol and resorcylic acids. Arch. Microbiol. 143: 52-59.

    Google Scholar 

  • Van Buren JP & Robinson WB (1969) Formation of complexes between protein and tannic acid. J. Agric. Food Chem. 17: 772-777.

    Google Scholar 

  • Vennat B, Pourrat A & Pourrat H (1986) Production of a depolymerized tannin extract using a strain of Saccharomyces rouxii.J. Ferment Technol. 64: 227-232.

    Article  Google Scholar 

  • William F, Boominathan K, Vasudevan N, Gurujeyalakshmi G & Mahadevan A (1986) Microbial degradation of lignin and tannin. J. Sci. Ind. Res. 45: 232-243.

    Google Scholar 

  • Watanabe A (1965) Studies on the metabolism of gallic acid by microorganisms. Part 3. Onthe intermediary metabolism of gallic acid by Aspergillus niger.Agric. Biol. Chem. 29: 20-26.

    Google Scholar 

  • Yamada H, Adachi O, Watanabe M & Sato N (1968a) Studies of fungal tannase. Part I. Formation, purification and catalytic properties of tannase of Aspergillus flavus. Agric. Biol. Chem. 32: 1070-1078.

    Google Scholar 

  • Yamada H, Adachi O, Watanabe M & Ogata K (1968b) Tannase (tannin acyl hydrolase), a typical serine esterase. Agric. Biol. Chem. 32: 257-258.

    Google Scholar 

  • Yamada H, Iibuchi S & Minoda Y (1967) Studies on tannin acyl hydrolase of microorganisms. Part I. Isolation and identification of producing molds and studies on the conditions of cultivation. J. Ferment. Technol. 45: 233-240.

    Google Scholar 

  • Young LY (1984) Anaerobic degradation of aromatic compounds. In: Gibson DT (Ed) Microbial degradation of organic compounds (pp. 487-523). Marcel Dekker Inc., New York.

    Google Scholar 

  • Zhu J, Fillipich LJ & Ng J (1995) Rumen involvement in sheep tannic acid metabolism. Vet. Human Toxicol. 37: 436-440.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhat, T.K., Singh, B. & Sharma, O.P. Microbial degradation of tannins – A current perspective. Biodegradation 9, 343–357 (1998). https://doi.org/10.1023/A:1008397506963

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008397506963

Navigation