Skip to main content
Log in

The Sol-Gel Process as a Basic Technology for Nanoparticle-Dispersed Inorganic-Organic Composites

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nanoparticles containing hybrid materials became of interest for many areas in the last decade. The reason for this is the fact that, in addition to the molecular inorganic-organic hybrid network, the physical, electronical, optical or catalytical properties of nanoparticles resulting from the inorganic crystalline, glassy or metallic properties also can be used for the material tailoring. For this reason, a survey is given over some interesting developments. Furthermore, in case studies, examples are given for the effect of nanoparticles on the two component Ormosil type of hybrids composed of ethyl ortho-silicate (TEOS) and methylethoxy(methoxy)triethoxy silane (MTEOS, MTMOS). It was shown that the 6 nm SiO2-containing nanocomposite hybrid sols can be dried in form of thick films up to 14 μm after a one step dip-coating process and densified crack-free. This is attributed to the increase of relaxation ability and flexibility. This nanocomposite based on TEOS, MTEOS and particulate SiO2 has been used to develop an industrial process for a new type of environmentally friendly glass fiber mat with a temperature resistance up to 600°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Lange, in International Symposium on Molecular Level Designing of Ceramics, Nagoya, 1991, edited by Team of the NEDO International Joint Research Program, p. 14.

  2. C.J. Brinker and G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, Boston, 1990).

    Google Scholar 

  3. H. Schmidt, in Mat. Res. Soc. Symp. Proc., Vol. 32: Organically modified silicates by the sol-gel process, 1984, p. 327.

  4. Mat. Res. Soc. Proc. Vol. 519: Organic-Inorganic Hybrid Materials, San Francisco, 1998: Mat. Res. Soc. Proc. Vol. 435: Better Ceramics Through Chemistry VII: Organic-inorganic Hybrid Materials, Pittsburgh, 1996.

  5. J.D. Mackenzie (ed.), SPIE, Vol. 2288: Sol-Gel Optics III, (SPIE, Bellingham/WA, USA, 1994); SPIE Sol-Gel Optics IV, edited by J.D. Mackenzie, Vol. 3136 (Bellingham/Washington, 1997); SPIE Sol-Gel Optics II, edited by J.D. Mackenzie, Vol. 1758 (Bellingham/San Diego, 1992).

    Google Scholar 

  6. H. Schmidt, in KONA, Powder and Particle, Nr. 14: Relevance of Sol-Gel Methods for Synthesis of Fine Particles, 1996, p. 92.

  7. M. Mennig, G. Jonschker, and H. Schmidt, in SPIE Sol-Gel Optics II: Sol-Gel Derived Thick SiO 2 Coatings and Their Thermomechanical and Optical Properties, edited by J.D. Mackenzie (SPIE, Bellingham, San Diego, 1992), p. 125.

    Google Scholar 

  8. H. Schmidt, M. Mennig, R. Nonninger, P.W. Oliveira, and H. Schirra, in Mat. Res. Soc. Symp.: Organic-Inorganic Hybrid Materials Processing and Applications (San Francisco, 1999).

  9. J. Zarzycki, in European Meeting Inorganic Coatings on Glass: Synthesis of Glasses from Precursor: Bulk and FilmA Comparision, edited by P. Picozzi, S. Santucci, P. Boattini, L. Massarelli, and V. Scopa (Società Italiana Vetro, L'Aquila, Italy, 1998), p. 149.

    Google Scholar 

  10. M. Mennig, G. Jonschker, G. Maetze, A. Bauer, H. Schmidt, and K. Gropkopf, in Glastechnische Tagung, Deutsche Glastechnische Gesellschaft (Anorganisch-organischer Nanokompositkleber für die Faser-Chip-Kopplung), Fulda, 1992.

  11. M. Mennig, M. Schmitt, H. Schmidt, K.-J. Berg, and J. Porstendorfer, in Rivista della Stazione Sperimentale del Vetro (Growth and Deformation of Gold Colloids in Lead Crystal Glass), Saarbruecken, Germany, 1993.

  12. C.Y. Li, J.Y. Tseng, K. Morita, C. Lechner, Y. Hu, and J.D. Mackenzie, in SPIE, Vol. 1758: Sol-Gel Optics II, edited by J.D. Mackenzie (SPIE, Bellingham, San Diego, 1992), p. 410.

    Google Scholar 

  13. C.Y. Li, J.Y. Tseng, C. Lechner, and J.D. Mackenzie, in Mater. Res. Soc. Symp. Proc., Vol. 272: Chemical Processes in Inorganic Materials: Metal and Semiconductor Clusters and Colloids, Los Angeles, 1992, p. 133.

  14. C.Y. Li, M. Wilson, N. Haegel, J.D. Mackenzie, E.T. Knobbe, C. Porter, and R. Reeves, in Mater. Res. Soc. Symp. Proc., Vol. 272: Chemical Processes in Inorganic Materials: Metal and Semiconductor Clusters and Colloids, Los Angeles, 1992, p. 41.

  15. R. Burzynski, M.K. Casstevens, Y. Zhang, J. Zieba, and P.N. Prassad, in SPIE-Int. Soc. Opt. Eng. Vol. 1853: Organic und Biological Optoelectronics, Bellingham, San Diego, 1993, p. 158.

  16. J.D. Mackenzie, J. Sol-Gel Sci. Technol. 1(1), 7 (1993).

    Google Scholar 

  17. A. Makishima and M. Uo, Oyo Butsuri 63(10), 988 (1994).

    Google Scholar 

  18. L. Kador, R. Fischer, R. Kasemann, S. Brueck, and H. Duerr J. Appl. Phys. 75(5), 2709 (1994).

    Google Scholar 

  19. E.J.A. Pope, J. Sol-Gel Sci. Technol. 2(1–3), 717 (1994).

    Google Scholar 

  20. E.P. Bescher, J.D. Mackenzie, T. Ohtsuki, and N. Peyghambarian, in Mater. Res. Soc. Symp. Proc., Los Angeles, 1994, Vol. 351, p. 135.

    Google Scholar 

  21. B. Viana, N. Koslova, P. Aschehoug, and C. Sanchez, J. Mater. Chem. 5(5), 719 (1995).

    Google Scholar 

  22. N.D. Kumar, G. Ruland, M. Yoshida, M. Lal, J. Bhawalkar, G.S. He, and P.N. Prasad, in Mater. Res. Soc. Symp. Proc., New York, 1996, Vol. 435, p. 535.

    Google Scholar 

  23. C. Sanchez and B. Lebeau, Pure Appl. Opt. 5(5), 689 (1996).

    Google Scholar 

  24. F. Leroux, B.E. Koene, and L.F. Nazar, J. Electrochem. Soc. 143(9), L181 (1996).

    Google Scholar 

  25. G.M. Kloster, J.A. Thomas, P.W. Brazis, C.R. Kannewurf, and D.F. Shriver, Chem. Mater. 8(10), 2418 (1996).

    Google Scholar 

  26. R. Gvishi, U. Narang, G. Ruland, D.N. Kumar, and P.N. Prassad, Appl. Organomet. Chem. 11(2), 107 (1997).

    Google Scholar 

  27. F. Gan, J. Sol-Gel Sci. Technol. 13(1–3), 559 (1998).

    Google Scholar 

  28. C. Sanchez, F. Ribot, and B. Lebeau, J. Mater. Chem. 9(1), 35 (1999).

    Google Scholar 

  29. K. Saravanamuttu, M.P. Andrews, and S.I. Najafi, in Proc. SPIE-Int. Soc. Opt. Eng., Montreal, 1998, Vol. 3417, p. 19.

    Google Scholar 

  30. M.P. Andrews, K. Saravanamuttu, T. Touam, R. Sara, X.M. Du, and S.I. Najafi in Proc. SPIE-Int. Soc. Opt. Eng., Montreal, 1998, Vol. 3282, p. 50.

    Google Scholar 

  31. M. Lal, M. Joshi, D.N. Kumar, C.S. Friend, J. Winiarz, T. Asefa, K. Kim, and P.N. Prasad, in Mater. Res. Soc. Symp. Proc., New York, 1998, Vol. 519, p. 217.

    Google Scholar 

  32. H.P. Wong, B.C. Dave, F. Leroux, J. Harreld, B. Dunn, and L.F. Nazar, J. Mater Chem. 8(4), 1019 (1998).

    Google Scholar 

  33. E. Cordoncillo, B. Viana, P. Escribano, and C. Sanchez, J. Mater. Chem. 8(3), 507 (1998).

    Google Scholar 

  34. D. Blanc, P. Peyrot, C. Sanchez, and C. Gonnet, Opt. Eng. 37(4), 1203 (1998).

    Google Scholar 

  35. C.S. Friend, M. Lal, A. Biswas, J. Winiarz, L. Zhang, and P.N. Prasad, in Proc. SPIE-Int. Soc. Opt. Eng.,NewYork, 1998, Vol. 3469, p. 100.

    Google Scholar 

  36. P. Etienne, P. Coudray, Y. Moreau, and J. Porque, J. Sol-Gel Sci. Technol. 13(1–3), 523 (1998).

    Google Scholar 

  37. Y. Chen, H. L.W. Chan, and C.L. Choy, in ISAF '96, Proc. 10th IEEE Int. Symp. Appl. Ferroelectr., Hong Kong, 1996, Vol. 2, p. 619.

    Google Scholar 

  38. S. Hirano, T. Yogo, K. Kikuta, and S. Yamada, Ceram. Trans. 68, 131 (1996).

    Google Scholar 

  39. Q. Zhang, H.L.W. Chan, Q. Zhou, and C.L. Choy, Chin. Sci. Bull. 43(2), 111 (1998).

    Google Scholar 

  40. Y. Chen, H.L.W. Chan, and C.L. Choy, Thin Solid Films 323(1, 2), 270 (1998).

    Google Scholar 

  41. Y. Chen, H.L.W. Chan, and C.L. Choy, J. Korean Phys. Soc., 32(Suppl., Proceedings of the 9th International Meeting on Ferroelectricity, 1997, Pt. 3), S1072 (1998).

    Google Scholar 

  42. Y. Chen, H.L.W. Chan, and C.L. Choy, J. Am. Ceram. Soc. 81(5), 1231 (1998).

    Google Scholar 

  43. Q.Q. Zhang, H.L.W. Chan, and C.L. Choy, Composites, Part A 30A(2), 163 (1998).

    Google Scholar 

  44. Q.Q. Zhang, L.W. Chan, Q. Zhou, and C.L. Choy, Mater. Res. Innovations, 2(5), 283 (1999).

    Google Scholar 

  45. H.L.W. Chan, S.T. Lau, K.W. Kwok, Q.Q. Zhang, Q.F. Zhou, and C.L. Choy, Sens. Actuators A75(3), 252 (1999).

    Google Scholar 

  46. J.E. Mark, in Int. SAMPE Tech. Conf., Vol. 27: Diversity into the Next Century, Cincinnati, 1995, p. 539.

  47. T. Saegusa, in Macromol. Symp., Vol. 98: 35th IUPAC International Symposium on Macromolecules, Kyoto, 1995, p. 719.

  48. B.M. Novak, M.W. Ellsworth, and C. Verrier, Polym. Mater. Sci. Eng. 70, 266 (1993).

    Google Scholar 

  49. C.L. Beaudry and L.C. Klein, Polym. Mater. Sci. Eng. 73, 431 (1995).

    Google Scholar 

  50. C.L. Beaudry and L.C. Klein, ACS Symp. Ser. 622, 382 (1996).

    Google Scholar 

  51. J. Wen and G.L. Wilkes, Chem. Mater. 8(8), 1667 (1996).

    Google Scholar 

  52. P.B. Leezenberg, M.D. Fayer, and C.W. Frank, Pure Appl. Chem. 68(7), 1381 (1996).

    Google Scholar 

  53. Z. Gao, Z. Zhao, Y. Ou, Z. Qi, and F. Wang, Polym. Int. 40(3), 187 (1996).

    Google Scholar 

  54. M.I. Sarwar and Z. Ahmad, in Adv. Mater.97, Proc. 5th Int. Symp. Islamabad, edited by M. Afzal Khan (Dr. A.Q. Khan Research Laboratories Kahuta, Rawalpindi, Pak, 1997), p. 73.

    Google Scholar 

  55. M. Motomatsu, T. Takahashi, H.-Y. Nie, W. Mizutani, and H. Tokumoto, Polymer 38(1), 177 (1997).

    Google Scholar 

  56. J.F. Gerard, H. Kaddami, and J.P. Pascault, in Ext. Abstr.EUROFILLERS 97, 2nd Int. Conf. Filled Polym. Fillers, Lyon, 1997, p. 407.

  57. A.B. Wojcik, A. Ting, and L.C. Klein, Mater. Sci. Eng. C, C6(2, 3), 115 (1998).

    Google Scholar 

  58. E. Reynaud, C. Gauthier, and J. Perez, Rev. Metall./Cah. Inf. Tech. 96(2), 169 (1999).

    Google Scholar 

  59. K.A. Mauritz, I.D. Stefanithis, S.V. Davis, R.W. Scheetz, R.K. Pope, and G.L. Wilkes, H.-H-Huang, J. Appl. Polym. Sci. 55(1), 181 (1995).

    Google Scholar 

  60. P.L. Shao, K.A. Mauritz, and R.B. Moore, Polym. Mater. Sci. Eng. 73, 427 (1995).

    Google Scholar 

  61. P.L. Shao, K.A. Mauritz, and R.B. Moore, Chem. Mater. 7(1), 192 (1995).

    Google Scholar 

  62. S.K. Young, Q. Deng, and K.A. Mauritz, Polym. Mater. Sci. Eng. 74, 309 (1996).

    Google Scholar 

  63. M.A. Harmer, W.E. Farneth, and Q. Sun, J. Am. Chem. Soc. 118(33), 7708 (1996).

    Google Scholar 

  64. M.A.F. Robertson and K.A. Mauritz, J. Polym. Sci., Part B: Polym. Phys. 36(4), 595 (1998).

    Google Scholar 

  65. I. Honma, S. Hirakawa, K. Yamada, and J.M. Bae, Solid State Ionics 118(1–2), 29 (1999).

    Google Scholar 

  66. K. Dahmouche, C.V. Santilli, S.H. Pulcinelli, and A.F. Craievich, J. Phys. Chem. B 103(24), 4937 (1999).

    Google Scholar 

  67. Z. Hu, A.F. Slaterbeck, C.J. Seliskar, T.H. Ridgway, and W.R. Heinemann, Langmuir 15(3), 767 (1999).

    Google Scholar 

  68. S.P. Nunes, J. Schultz, and K.-V. Peinemann, J. Mater. Sci. Lett. 15(13), 1139 (1996).

    Google Scholar 

  69. Q. Hu, E. Marand, S. Dhingra, D. Fritsch, J. Wen, and G. Wilkes, J. Membr. Sci. 135(1), 65 (1997).

    Google Scholar 

  70. P.B. Malla and S. Komarneni, in Mater. Res. Soc. Symp. Proc., Vol. 286: Nanophase and Nanocomposite Materials, 1993, p. 323.

  71. A. Okada and A. Usuki, Mater.Sci. Eng. C C3(2), 109 (1995).

    Google Scholar 

  72. D.H. Gray, S. Hu, E. Juang, and D.L. Gin, Adv. Mater. 9(9), 731 (1997).

    Google Scholar 

  73. P. Olivera-Pastor, P. Maireles-Torres, E. Rodriguez-Castellon, A. Jimenez-Lopez, T. Cassagneau, D.J. Jones, and J. Roziere, Chem. Mater 8(8), 1758 (1996).

    Google Scholar 

  74. L. Ukrainczyk, R.A. Bellman, K.A. Smith, and J.E. Boyd, in Mater. Res. Soc. Symp. Proc., Vol. 457: Nanophase and Nanocomposite Materials II, Ames, IA, USA, 1997, p. 519.

  75. L. Ukrainczyk, R.A. Bellman, and A.B. Anderson, J. Phys. Chem. B. 101(4), 531 (1997).

    Google Scholar 

  76. V.M. Cepak, J.C. Hulteen, G. Che, K.B. Jirage, B.B. Lakshmi, E.R. Fisher, and C.R. Martin, J. Mater. Res. 13(11), 3070 (1998).

    Google Scholar 

  77. A. Rosidian, Y. Liu, and R.O. Claus, in Surf. Modif. Technol. XII, Proc. 12th Int. Conf., Blacksburg, VA, USA, 1998, p. 307.

  78. C.J. Brinker, Y. Lu, A. Sellinger, and H. Fan, Adv. Mater. 11(7), 579 (1999).

    Google Scholar 

  79. H.J. Watzke; C. Dieschbourg, Adv. Colloid Interface Sci. 50(1–3), 1 (1994).

    Google Scholar 

  80. D. Tian, P. Dubois, C. Grandfils, R. Jerome, P. Viville, R. Lazzaroni, J.-L. Bredas, and P. Leprince, Chem. Mater. 9(4), 871 (1997).

    Google Scholar 

  81. Q.F. Zhou, Q.Q. Zhang, J.X. Zhang, L.Y. Zhang, and X. Yao, Mater. Lett. 31(1, 2), 39 (1997).

    Google Scholar 

  82. Y. Wei, D. Jin, and T. Ding, J. Phys. Chem. B 101(17), 3318 (1997).

    Google Scholar 

  83. S. Stein, N. Moszner, Th. Voelkel, and V. Rheinberger, in Mater. Res. Soc. Symp. Proc., Vol. 519 Organic/Inorganic Hybrid Materials, Liechtenstein, 1998, p. 357.

    Google Scholar 

  84. I. Ichinose, T. Kawakami, and T. Kunitake, Adv. Mater. 10(7), 535 (1998).

    Google Scholar 

  85. J. Luo, J.J. Lannutti, and R.R. Seghi, Dent. Mater. 14(1), 29 (1998).

    Google Scholar 

  86. W. Shenton, T. Douglas, M. Young, G. Stubbs, and S. Mann, Adv. Mater. 11(3), 253 (1999).

    Google Scholar 

  87. D. Chakravorty, in New Mater., edited by S.K. Joshi (Narosa, New Delhi, India, 1992), p. 170.

    Google Scholar 

  88. O. Nakamura, Y. Saito, H. Nakamura, T. Asai, K. Ado, M. Haruta, T. Kobayashi, S. Tsubota, and H. Sakurai et al., Osaka Kogyo Gijutsu Shikensho Hokoku 386, 1 (1992).

    Google Scholar 

  89. J.D. Mackenzie, J. Ceram. Soc. Jpn. 101, 1 (1993).

    Google Scholar 

  90. B.M. Novak, Adv. Mater. 5(6), 422 (1993).

    Google Scholar 

  91. R. Roy, in Mater. Res. Soc. Symp. Proc., Vol. 286: Nanophase and Nanocomposite Materials, University Park, PA, USA, 1993, p. 241.

    Google Scholar 

  92. F. Babonneau, L. Bois, J. Livage, and S. Dire, in Mater. Res. Soc. Symp. Proc., Vol. 286: Nanophase and Nanocomposite Materials, Paris, 1993, p. 289.

  93. E.J.A. Pope, in Proc. 16th Int. Conf. Lasers, Westlake Village, CA, USA, 1994, p. 372.

  94. R. Roy, Trans. Mater. Res. Soc. Jpn. 19B(Frontiers in Materials Science and Engineering), 719 (1994).

    Google Scholar 

  95. U. Reiter, in Ger. Offen., 3 pp., KM-kabelmetal AG, Germany.

  96. J.D. Mackenzie, in ACS Symp. Ser., Vol. 585: Hybrid Organic-Inorganic Composites, Los Angeles, 1995, p. 226.

  97. B. Lantelme, M. Dumon, C. Mai, and J.P. Pascault, J. Non-Cryst. Solids 194(1, 2), 63 (1996).

    Google Scholar 

  98. M.A.F. Robertson and K.A. Mauritz, Polym. Prepr (Am. Chem. Soc. Div. Polym. Chem.) 37(2), 248 (1996).

    Google Scholar 

  99. R. Roy, J. Mater. Educ. 18(4&5), 267 (1996).

    Google Scholar 

  100. C. Courtois, A. Rabih, D. O'Sullivan, A. Leriche, and B. Thierry, Key Eng. Mater. 132/136 1010 (1997).

    Google Scholar 

  101. L. Matejka and J. Plestil, in Macromol. Symp., Vol. 122: International Symposium on Polycondensation, Related Processes and Materials, Prague, Czech. Rep., 1997, p. 191.

  102. I.A. Tutorskii, T.E. Tkachenko, and N.I. Malyavskii, Proizvod. Ispol'z. Elastomerov 8, 6 (1997).

    Google Scholar 

  103. T.A. Ulibarri, D.K. Derzon, L.C. Wang, in Annu. Tech. Conf. 55th Soc. Plast. Eng., Vol. 2, Albuquerque, NM, USA, 1997, Vol. 2, p. 1925.

    Google Scholar 

  104. J. Livage, Curr. Opin. Solid State Mater. Sci. 2(2), 132 (1997).

    Google Scholar 

  105. J. Zarzycki, J. Sol-Gel Sci. Technol. 8(1–3), 17 (1997).

    Google Scholar 

  106. F. Ribot and C. Sanchez, Comments Inorg. Chem. 20(4–6), 327 (1999).

    Google Scholar 

  107. D.R. Uhlmann and G. Teowee, J. Sol-Gel Sci. Technol. 13(1–3), 153 (1998).

    Google Scholar 

  108. M. Mohseni, P.F. James, and P.V. Wright, J. Sol-Gel Sci. Technol. 13(1–3), 495 (1998).

    Google Scholar 

  109. J. Hay, H. Raval, and D. Porter, Chem. Commun. 1, 81 (1999).

    Google Scholar 

  110. S. Yano, K. Iwata, K. Kurita, Mater. Sci. Eng. C, C6(2–3), 75 (1998).

    Google Scholar 

  111. M. Senna, Surfactant Sci. Ser. 76, 503 (1998).

    Google Scholar 

  112. J. Kang, S.H. Park, H.Y. Kwon, D.G. Park, S.S. Kim, H.-J. Kweon, and S.S. Nam, Bull Korean Chem. Soc. 19(5), 503 (1998).

    Google Scholar 

  113. Z. Ahmad, M.I. Sarwar, H. Krug, and H. Schmidt, Int. J. Polym. Mater. 39(1–2), 127 (1998).

    Google Scholar 

  114. K.M. Asif, M.I. Sarwar, S. Rafiq, and Z. Ahmad, Polym. Bull. 40(4–5), 583 (1998).

    Google Scholar 

  115. K.M. Choi and K.J. Shea, Plast. Eng. 49(Photonic Polymer Systems), 437 (1998).

    Google Scholar 

  116. K.G. Sharp, in Mater. Res. Soc. Symp. Proc., Vol. 520: Nanostructured Powders and Their Industrial Application, Wilmington, DE, USA, 1998, p. 123.

  117. B. Lebeau and C. Sanchez, Curr. Opin. Solid State Mater. Sci. 4(1), 11 (1999).

    Google Scholar 

  118. P.W. Oliveira, H. Krug, H. Kuenstle, and H. Schmidt, in Proc. SPIE-Int. Soc. Opt. Eng., Vol. 2288: Sol-Gel Optics III, (SPIE Saarbruecken, Germany, 1994), p. 554.

    Google Scholar 

  119. E.J.A. Pope, in Proc. SPIE-Int. Soc. Opt. Eng., Vol. 2288: Sol-Gel Optics III, (SPIE Westlake Village, CA, USA, 1994), p. 410.

    Google Scholar 

  120. Y. Wei, W. Wang, J.-M. Yeh, B. Wang, D. Yang, J.K. Murray, Jr., D. Jin, and G. Wei, in ACS Symp. Ser., Vol. 585: Hybrid Organic-Inorganic Composites, Philadelphia, 1995, p. 125.

  121. C. Guermeur, C. Sanchez, B. Schaudel, K. Nakatini, J.A. Delaire, F. Del Monte, and D. Levy, in Proc. SPIE-Int. Soc. Opt. Eng., Vol. 3136: Sol-Gel Optics IV, (SPIE, Avon, France, 1997), p. 10.

    Google Scholar 

  122. P.W. Oliveira, H. Krug, and H. Schmidt, in Proc. SPIE-Int. Soc. Opt. Eng., Vol. 3136: Sol-Gel Optics IV, (SPIE, Saarbruecken, Germany, 1997), p. 442.

    Google Scholar 

  123. X. Jing, M. Zheng, Z. Jin, and X. Xu, Gaofenzi Cailiao Kexue Yu Gongcheng, 14(4), 62 (1998).

    Google Scholar 

  124. K. Saravanamuttu, X.M. Du, S.I. Najafi, and M.P. Andrews, Can. J. Chem. 76(11), 1717 (1998).

    Google Scholar 

  125. C. Sanchez, A. Lafuma, L. Rozes, K. Nakatani, J.A. Delaire, E. Cordoncillo, B. Viana, and P. Escribano, in Proc. SPIE-Int. Soc. Opt. Eng., Vol. 3469: Organic-Inorganic Hybrid Materials for Photonics, (SPIE, Paris, 1998), p. 192.

    Google Scholar 

  126. H. Tagaya, T. Nagaoka, T. Kuwahara, M. Karasu, J.-I. Kadokawa, and K. Chiba, Microporous Mesoporous Mater. 21(4–6), 395 (1998).

    Google Scholar 

  127. G. Jonschker, Ph. D. thesis, University of Saarland, Saarbrucken, Germany, 1998.

  128. Q. Deng, K.M. Cable, R.B. Moore, and K.A. Mauritz, J. Polym. Sci. Part B: Polym. Phys. 34(11), 1917 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, H., Jonschker, G., Goedicke, S. et al. The Sol-Gel Process as a Basic Technology for Nanoparticle-Dispersed Inorganic-Organic Composites. Journal of Sol-Gel Science and Technology 19, 39–51 (2000). https://doi.org/10.1023/A:1008706003996

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008706003996

Navigation