Skip to main content
Log in

Abstract

The first attempts to introduce carbon into glass date back to 1951. But up until recently, the use of carbon or carbide raw materials, and the oxidation, volatilization and decomposition that accompany high temperature melting, have limited the synthesis of true silicon oxycarbide glasses. Here, the term silicon-oxycarbide refers specifically to a carbon-containing silicate glass wherein oxygen and carbon atoms share bonds with silicon in the amorphous, network structure. Thus, there is a distinction between black glass, which contains only a second-phase dispersion of elemental carbon, and oxycarbide glasses which usually contain both network carbon and elemental carbon. In addition to exploring the unique properties and applications of these glasses, per se, they are also of interest for developing models of the residual amorphous phases in polymer-derived silicon-carbide and silicon-nitride ceramics.

The application of sol/gel techniques to glass synthesis has significantly advanced the development and characterization of silicon oxycarbide glasses. In this approach, alkyl-substituted silicon alkoxides, which are molecular precursors containing oxygen and carbon functionalities on the silicon, can be hydrolyzed and condensed without decomposition or loss of the carbon functional group. A low-temperature (<1000°C) heat-treatment of the gel creates a glassy silicate material whose molecular structure consists of an oxygen/carbon anionic network. In addition, there is always a blackening of the material due to elemental carbon, which forms during pyrolysis and densification of the gel. The nature of the network carbon, and especially the distribution and form of the elemental carbon, are fundamental to the structure and properties of these novel materials. Their chemical and physical characteristics as revealed by NMR, Raman and TEM are discussed in the overview. In addition, the high temperature stability of these glasses (up to 1750°C), and the effect of hot-pressing, are described.

It will be shown that the silicon oxycarbide network is stable up to 1000–1200°C. The network carbon is terminated with hydrogen (i.e., CH, =CH2 and –CH3), and with polyaromatic carbon (i.e., nC6Hx) wherein most of the elemental carbon resides. These glasses can be described as molecular composites of polyaromatic graphene-rings dispersed in a silicon oxycarbide network. After heating to temperatures in excess of 1000–1200°C, the oxycarbide network decomposes through the loss of hydrogen, and a two- or three-phase glass-ceramic consisting of nanocrystalline graphite, silicon carbide, and amorphous silica or cristobalite, is created. Some of the properties and applications of these glasses/glass-ceramics for coatings, composites and porous solids are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. _C.J. Brinker and G.W. Scherer, Sol-Gel Science (Academic Press, San Diego, 1990).

    Google Scholar 

  2. H. Schmidt, Organic modification of the glass structure, J. Non-Cryst. Solids 112, 419–423 (1989).

    Google Scholar 

  3. R. Ellis, Method of making electrically conducting glass and articles made therefrom, U.S. Pat. 2,556,616, June 1951.

  4. _C.F. Smith and W.B. Crandall, Method of making carbon contauning glasses, U.S. Patent No. 3,378,431, 1968.

  5. R. Elmer and H. Meissner, Increase of annealing point of 96% SiO2 glass on incorporation of carbon, J. Am. Ceram. Soc. 59(5), 206–209 (1976).

    Google Scholar 

  6. J. Homeny, G. Nelson, and S. Risbud, Oxycarbide glasses in the Mg-Al-Si-O-C system, J. Am. Ceram. Soc. 71(5), 386–390 (1988).

    Google Scholar 

  7. D. Coon, Effect of silicon carbide additions on the crystallization behavior of a magnesia-lithium-alumina-silica system, J. Am. Ceram. Soc. 72(7), 1270–1273 (1989).

    Google Scholar 

  8. R. Pampuch, W.S. Ptak, S. Jonas, and J. Stoch, The nature of Si-O-C phase(s) formed during oxidation of SiC, in Proceedings of the 9th International Symposium on Reactivity of Solids, Cracow, Poland, Sept. 1980, Vol. 2 (Elsevier, New York, 1980), pp. 674–677.

    Google Scholar 

  9. V.A. Lavrenko, S. Jonas, and R. Pampuch, Petrographic and X-ray identification of phases formed by oxidation of silicon carbide, Ceram. Int. 2, 75–76 (1981).

    Google Scholar 

  10. A.L. Yurkov and B.I. Polyak, Contact phenomenon and interactions in the system SiC-SiO2-RxOy in condensed matter, J. Mater. Sci. 31(10), 2729–2733 (1996).

    Google Scholar 

  11. J. Lipowitz, H.A. Freeman, R.T. Chen, and E.R. Prack, Composition and structure of ceramic fibers prepared from polymer precursors, Adv. Ceram. Mater. 2(2), 121–128 (1987).

    Google Scholar 

  12. J. Lipowitz, Polymer derived ceramic fibers, Ceram. Bull. 70(12), 1888–1894 (1991).

    Google Scholar 

  13. L. Porte and A. Satre, Evidence for silicon oxycarbide phase in Nicalon silicon carbide fiber, J. Mat. Sci. 24(27), (1989).

  14. D.A. White, S.M. Oleff, R.D. Boyer, P.A. Budinger, and J.R. Fox, Preparation of silicon carbide from organosilicon gels: I, synthesis and characterization of precursor gels, Adv. Ceram. Mater. 2(1), 45–52 (1987).

    Google Scholar 

  15. D.A. White, S.M. Oleff, R.D. Boyer, P.A. Budinger, and J.R. Fox, Preparation of silicon carbide from organosilicon gels: II, gel pyrolysis and SiC characterization, Adv. Ceram. Mater. 2(1), 53–59 (1987).

    Google Scholar 

  16. G. Wei, C. Kennedy, and L. Harris, Synthesis of sinterable SiC powders by carbothermic reduction reaction of gel-derived precursor and pyrolysis of polycarbosilane, Ceramic Bulletin 63(8), 1054–1061 (1984).

    Google Scholar 

  17. Krishan L. Luthra, Thermochemical analysis of the stability of continuous “SiC” Fibers, J. Am. Ceram. Soc. 69(10), C-231–C-233 (1986).

    Google Scholar 

  18. M. Nagamori, J.A. Boivin, and A. Claveau, Thermodynamic stability of silicon oxycarbide (Nicalon), J. Mater. Sci. 30, 5449–5456 (1995).

    Google Scholar 

  19. P. Rocabois, C. Chatillon, and C. Bernard, Mass spectrometry experimental investigation and thermodynamic calculation of the Si-C-O system and SixCyOz fibre stability, in Proc. 6th European Conf. on Composite Materials, edited by R. Naslaun et al. (Woodhead Publishing, 1993), pp. 93–100.

  20. P. Rocabois, C. Chatillon, and C. Bernard, Multiple Knudsen cell mass spectrometric investigation of the evaporation of silicon oxycarbide glass, Surface and Coating Techn. 61(86), (1993).

  21. F.K. Chi, Carbon-contauning monolithic glasses via the sol-gel process, Ceram. Eng. Sci. Proc. 4, 704–717 (1983).

    Google Scholar 

  22. F. Babonneau, K. Thorne, and J.D. Mackenzie, Dimethyldiethoxysilane/tetraethoxysilane copolymers: Precursors for the Si-C-O System, Chem. Mater. 1, 554–558 (1989).

    Google Scholar 

  23. H. Zhang and C.G. Pantano, Synthesis and characterization of silicon oxycarbide glasses, J. Am. Ceram. Soc. 73(4), 958–963 (1990).

    Google Scholar 

  24. K. Kamiya, T. Yoko, T. Sano, and K. Tanaka, Distribution of carbon particles in carbon/SiO2 glass composites made from CH3Si(OC2H5)3 by the sol-gel method, J. Non-Cryst. 119, 14–20 (1990).

    Google Scholar 

  25. K. Kamiya, T. Yoko, K. Tanaka, and M. Takeuchi, Thermal evolution of gels derived from CH3Si(OC2H5)3 by the sol-gel method, J. Non-Cryst. Solids 121, 182–187 (1990).

    Google Scholar 

  26. G.M. Renlund, S. Prochazka, and R.H. Doremus, Silicon oxycarbide glasses: Part I. preparation and chemistry, part II. structure and properties, J. Mater. Res. 6(12), 2716–2734 (1991).

    Google Scholar 

  27. F.I. Hurwitz, P.J. Heimann, J.Z. Gyekenyesi, J. Masnovi, and X.Y. Bu, Polymeric routes to silicon carbide and silicon oxycarbide CMC, Ceram. Eng. Sci. Proc. 12(7/8), 1292–1303 (1991).

    Google Scholar 

  28. A.K. Singh and C.G. Pantano, The role of Si-H functionality in oxycarbide glasses synthesis, Mat. Res. Soc. Symp. Proc. 271, 795–800 (1992).

    Google Scholar 

  29. F. Babonneau, G.D. Soraru, G. D'Andrea, S. Dire, and L. Bois, Silicon oxycarbide glasses from sol-gel precursors, Mat. Res. Soc. Symp. Proc. 271, 789–794 (1992).

    Google Scholar 

  30. H. Zhang and C.G. Pantano, High temperature stability of oxycarbide glasses, Mat. Res. Soc. Symp. Proc. 271, 783–788 (1992).

    Google Scholar 

  31. H. Zhang and C.G. Pantano, Sol/gel processing of oxycarbide glasses and glass matrix composites, Ultrastructure Processing of Advanced Materials (Wiley, New York, 1992), pp. 223–233.

    Google Scholar 

  32. V. Belot, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, Organosilicon gels contauning silicon-silicon bonds, precursors to novel silicon oxycarbide compositions, J. Non-Cryst. 144, 287–297 (1992).

    Google Scholar 

  33. V. Belot, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, Thermal reactions occurring during pyrolysis of cross-linked polysilazane gels, precursors to silicon oxycarbide glasses, J. Non-Cryst. 147/148, 52–55 (1992).

    Google Scholar 

  34. F. Babonneau, L. Bois, and J. Livage, Silicon oxycarbide via sol-gel route: Characterization of the pyrolysis process, J. Non-Cryst. 147/148, 280–284 (1992).

    Google Scholar 

  35. M. Hammond, E. Breval, and C.G. Pantano, Microstructure and viscosity of hot-pressed silicon oxycarbide glasses, Ceram. Eng. Sci. Proc. 14(9/10), 947 (1993).

    Google Scholar 

  36. P. Colombo, T.E. Paulson, and C.G. Pantano, Conversion of silicone resin to silicon (oxy)carbide, Ceram. Acta. 3, 13–21 (1993).

    Google Scholar 

  37. L. Bois, J. Maquet, F. Babonneau, H. Mutin, and D. Bahloul, Structural characterization of sol-gel derived oxycarbide glasses. 1. Study of the pyrolysis process, Chem. Mater. 6, 796–802 (1994).

    Google Scholar 

  38. E. Breval, M. Hammond, and C.G. Pantano, Nanostructural characterization of silicon oxycarbide glasses and glassceramics, J. Amer. Ceram. Soc. 77(11), 3012–3018 (1994).

    Google Scholar 

  39. V. Belot, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, Silicon oxycarbide glasses with low O/Si ratio from organosilicon precursors, J. Non-Cryst. Solids 176, 33–44 (1994).

    Google Scholar 

  40. C. Liu, H. Zhang, S. Komarneni, and C.G. Pantano, Porous silicon oxycarbide glasses from organically modified silica gels of high surface area, J. Sol-Gel Science and Techn. 1, 141 (1994).

    Google Scholar 

  41. L. Bois, J. Maquet, F. Babonneau, and D. Bahloul, Structural characterization of the sol-gel derived oxycarbide glasses. 2._Study of the thermal stability of the silicon oxycarbide phase, Chem. Mater. 7, 975–981 (1995).

    Google Scholar 

  42. G.D. Soraru, G. D'Andrea, R. Campostrini, F. Babonneau, and G. Marriotto, Structural characterization and high temperature behavior of silicon oxycarbide glasses prepared from solgel precursors contauning Si-H bonds, J. Am. Ceram. Soc. 78, 379–387 (1995).

    Google Scholar 

  43. R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, 29Si Nuclear magnetic resonance study of the structure of silicon oxycarbide glasses derived from organosilicon precursors, J. Mater. Sci. 30, 2313–2318 (1995).

    Google Scholar 

  44. J.P. Hamilton, Sol-gel processing and characterization of borondoped silicon oxycarbide glasses, Thesis in Ceramic Science, The Pennsylvania State University, 1995.

  45. Anant K. Singh and C.G. Pantano, Porous silicon oxycarbide glasses, J. Amer. Ceram. Soc. 79(10), 2696–2704 (1996).

    Google Scholar 

  46. C. Liu, H.Z. Chen, S. Komarneni, and C.G. Pantano, High surface area SiC/silicon oxycarbide glasses prepared from phenyltrimethoxysilane-tetramethoxysilane gels, J. Porous Materials 2, 245–252 (1996).

    Google Scholar 

  47. A.M. Wootton, M. Rappensberger, M.H. Lewis, S. Kitchin, A.P. Howes, and R. Dupree, Structural properties of multi-component silicon oxycarbide glasses derived from metal alkoxide precursors, J. Non-Cryst. Solids 204, 217–227 (1996).

    Google Scholar 

  48. R. Campostrini, G. D'Andrea, G. Carturan, R. Ceccato, and G.D. Soraru, Pyrolysis study of methyl-substituted Si-H contauning gels as precursors for oxycarbide glasses, by combined thermogravimetry, gas chromatographic and mass spectrometric analysis, J. Mater. Chem. 6(4), 585–594 (1996).

    Google Scholar 

  49. G.D. Soraru, G. D'Andrea, and A. Glisenti, XPS characterization of gel-derived silicon oxycarbide glasses, Materials Letters 27(1–5), (1996).

  50. G.D. Soraru, E. Dallapiccola, and G. D'Andrea, Mechanical characterization of sol-gel-derived silicon oxycarbide glasses, J. Amer. Ceram. Soc. 79(8), 2074–2080 (1996).

    Google Scholar 

  51. G.D. Soraru, R. Campostrini, S. Maurina, and F. Babonneau, Gel precursor to silicon oxycarbide glasses with ultrahigh ceramic yield, J. Amer. Ceram. Soc. 80(4), 999–1004 (1997).

    Google Scholar 

  52. Anant K. Singh and C.G. Pantano, Surface chemistry and structure of silicon oxycarbide gels and glasses, J. Sol-Gel Sci. Tech. 8, 371–376 (1997).

    Google Scholar 

  53. T. Rouxel, G. Massouras, and G. Soraru, High temperature behavior of a gel-derived SiOC glass: Elasticity and viscosity, J. Sol-Gel Sci. Tech. 14, (1998).

  54. E. Lippmaa, M. Magi, A. Samoson, G. Engelhart, and A.R. Grimmer, Structural studies of silicates by solid-state high resolution 29Si NMR, J. Am. Chem. Soc. 102, 4889–4893 (1980).

    Google Scholar 

  55. K. Moedritzer, Redistribution reactions of organometallic compounds of silicon, germanium, tin and lead, Organometallic Chemistry Review 1, 179–278 (1966).

    Google Scholar 

  56. V. Belot, R.J.P. Corriu, D. Leclercq, P.H. Mutin, and A. Vioux, Thermal redistribution reactions in crosslinked polysiloxanes, J. Polymer Sci. Chem. 30, 613–623 (1992).

    Google Scholar 

  57. P. Lespade, A. Marchand, M. Couzi, and F. Cruege, Characterization of carbonaceous materials by Raman microspectroscopy, Carbon 23(4/5), 375–385 (1984).

    Google Scholar 

  58. D. Knight and W. White, Characterization of diamond films by Raman spectroscopy, J. Mater. Res. 4(2), 385–393 (1989).

    Google Scholar 

  59. J. Biernacki and G. Wotzak, Stoichiometry of the CCSiO2 reactions, J. Amer. Ceram. Soc. 72(1), 122–129 (1989).

    Google Scholar 

  60. F.I. Hurwitz, J.Z. Gyekenyesi, P.J. Conroy, and A.L. Rivera, Nicalon/siliconoxycarbide ceramic composites, Ceram. Eng. Sci. Proc. 11(7/8), 931–946 (1990).

    Google Scholar 

  61. T. Erny, M. Seibold, O. Jarchow, and P. Greil, Microstructure development of oxycarbide composites during active-fillercontrolled polymer pyrolysis, J. Amer. Ceram. Soc. 76(1), 207–213 (1993).

    Google Scholar 

  62. P. Colombo and T.E. Paulson, Atmosphere effects in the processing of silicon carbide and silicon oxycarbide thin films and coatings, J. Sol-Gel Sci. Tech. 2, 601–604 (1994).

    Google Scholar 

  63. M. Harris, T. Chaudhary, L. Drzal, and R.M. Laune, Silicon oxycarbide coatings on graphite fibers, I. Chemistry, processing, and oxidation resistance, Mater. Sci. Eng. A A195, 223–236 (1995).

    Google Scholar 

  64. T.M. Chaudhary, H. Ho, L.T. Drzal, M. Harris, and R.M. Laune, Silicon oxycarbide coatings on graphite fibers II. Adhesion, processing and interfacial properties, Mater. Sci. Eng. A A195, 237–249 (1995).

    Google Scholar 

  65. A Donato, P. Colombo, and M.O. Abdirashid, Joining of SiC to SiC using a preceramic polymer, in High-Temperature Ceramic-Matrix Composites I: Design, Durability and Performance, edited by A.G. Evans and R. Naslaun, Ceramic Transactions Vol. 57 (The American Ceramic Society, Westerville, OH,1995), pp. 431–436.

    Google Scholar 

  66. J.C. Pivin, P. Colombo, and M. Tonidandel, Ion irradiation of preceramic polymer and thin films, J. Am. Ceram. Soc. 79, 1967–1970 (1996).

    Google Scholar 

  67. J.C. Pivin and P. Colombo, Conversion of inorganic-organic polymers to ceramics by ion implantation, Nuclear Instruments and Methods in Physics Research B, 120, 262–265 (1996).

    Google Scholar 

  68. J.C. Pivin and P. Colombo, Ceramic coatings by ion irradiation of polycarbosilanes and polysiloxanes, Part I: Conversion mechanism, J. Mater. Sci. 32, 6163–6173 (1997).

    Google Scholar 

  69. J.C. Pivin and P. Colombo, Ceramic coatings by ion irradiation of polycarbosilanes and polysiloxanes, Part II: Hardness and thermochemical stability, J. Mater. Sci. 32, 6175–6182 (1997).

    Google Scholar 

  70. E. Pippel, J. Woltersdorf, P. Colombo, and A. Donato, Structure and composition of interlayers in joints between SiC bodies, J. Europ. Ceram. Soc. 17, 1259–1265 (1997).

    Google Scholar 

  71. P. Colombo, V. Sglavo, E. Pippel, and J. Woltersdorf, Joining of reaction-bonded silicon carbide using a preceramic polymer, J. Mater. Sci. 33, 2409–2416 (1998).

    Google Scholar 

  72. P. Colombo and M. Modesti, Silicon oxycarbide foams from a silicone preceramic polymer and polyurethane, J. Sol-Gel. Sci. Tech. 14(1), 103–111 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pantano, C.G., Singh, A.K. & Zhang, H. Silicon Oxycarbide Glasses. Journal of Sol-Gel Science and Technology 14, 7–25 (1999). https://doi.org/10.1023/A:1008765829012

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008765829012

Navigation