Skip to main content
Log in

Sol-Gel Derived Ferroelectric Thin Films: Avenues for Control of Microstructural and Electric Properties

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The paper presents short review of the works performed during the last few years in the field of the alkoxy-derived ferroelectric films. PZT films were prepared using titanium and zirconium alkoxides and Pb(CH3COO)2· 2H2O as precursors. Different way of lead acetate dehydration and the impact of lead excess in the precursor solutions on the properties of the PZT films are discussed. Trimetallic alkoxide systems Bi(OR)3-Ta(OR)5-ROH (R = Me, Et or i Pr) were studied as precursors for preparation of SrBi2Ta2O9 films. Films prepared from these solutions and annealed at the temperature between 700 and 750°C demonstrated the remanent polarization Pr* − P^ r = 7–9 μC/cm2. Ba1-xSrxTiO3 films we applied from modified alkoxide solutions. Decomposition of the organic phase in the course of thermal treatment of the films is studied by IR-spectroscopy. The dependence of the dielectric permittivity of the films via the annealing temperature is reported. Preparation of LiNbO3, SrZr0.2Ti0.8O3, Zr0.8Sn0.2TiO4 is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.F. Scott, C.A. Paz de Araujo, and L.D. McMillan, Condensed Matter News 1, 16 (1992).

    Google Scholar 

  2. L. Peter, Semiconductor International 21, 64 (1998).

    Google Scholar 

  3. L.W. Hrubesh, MRS Proc. 381, 267 (1995).

    Google Scholar 

  4. Precision Cleaning and Meniscus Coating System, Specialty Coating Systems.

  5. N. Solayappan, V. Joshi, A. DeVilbiss, J. Bacon, J. Cuchiaro, L. McMillan, and C. Paz de Araujo, Integrated Ferroelectrics 22, 1 (1998).

    Google Scholar 

  6. V.A. Shreider, E.P. Turevskaya, N.I. Kozlova, and N.Ya. Turova, Inorganica Chimica Acta 53, L73 (1981).

    Google Scholar 

  7. M.I. Yanovskaya, L.I. Solov'eva, E.P. Kovsman, I.E. Obvintseva, K.A. Vorotilov, and N.Ya. Turova, Integrated Ferroelectrics 4, 275 (1994).

    Google Scholar 

  8. Russian Patents 2017711, 1994; 2017713, 1994; 2017714, 1994.

  9. N.Ya. Turova, E.P. Turevskaya, M.I. Yanovskaya, A.I. Yanovsky, V.G. Kessler, and D.E. Tcheboukov, Polyhedron 17, 809 (1998).

    Google Scholar 

  10. N.Ya. Turova, E.P. Turevskaya, M.I. Yanovskaya, and V.G. Kessler, J.Sol-Gel Science and Technology 2, 17 (1994).

    Google Scholar 

  11. Russian Patent 895020, 1982.

  12. M.I. Yanovskaya, E.P. Turevskaya, N.Ya. Turova, A.V. Novoselova, and Yu.N. Venevtsev, Neorganich. Mater. 17, 307 (1981) (Russian).

    Google Scholar 

  13. K.A. Vorotilov, E.V. Orlova, V.I. Petrovsky, M.I. Yanovskaya, S.A. Ivanov, E.P. Turevskaya, and N.Ya. Turova, Ferroelectrics 123, 261 (1991).

    Google Scholar 

  14. E.P. Turevskaya, M.I. Yanovskaya, N.Ya. Turova, A.K. Kochetov, and Yu.N. Venevtsev, Material Science Forum 62–64, 49 (1990).

    Google Scholar 

  15. K.D. Budd, S.K. Dey, and D.A. Payne, Brit. Ceram. Proc. 36, 107 (1985).

    Google Scholar 

  16. M. Klee, R. Eusemann, R. Waser, W. Brand, and H. Van Hal, J. Appl. Phys. 72, 1566 (1992).

    Google Scholar 

  17. O.W. Kolling and J.L. Lambert, Inorg. Chem. 3, 202 (1964).

    Google Scholar 

  18. M.I. Yanovskaya, I.E. Obvintseva, L.I. Solovyova, E.P. Kovsman, K.A. Vorotilov, and V.A. Vasilyev, Integrated Ferroelectrics 19, 193 (1998).

    Google Scholar 

  19. L.I. Solov'eva, I.E. Obvintseva, M.I. Yanovskaya, K.A. Vorotilov, and V.A. Vasil'ev, Inorganic Materials 32, 767 (1996).

    Google Scholar 

  20. K.D. Budd, S.K. Dey, and D.A. Payne, Mater. Res. Symp. Proc. 72, 317 (1986).

    Google Scholar 

  21. S.D. Ramamuurthy and D.A. Payne, J. Amer. Ceram. Soc. 73, 2547 (1990).

    Google Scholar 

  22. M. Klee, A. De Veirman, P. Van De Weijer, U. Mackens, and H. Van Hal, Philips J. Res. 47, 263 (1993).

    Google Scholar 

  23. M. Klee, A. De Veirman, D.J. Taylor, and P.K. Larsen, Integrated Ferroelectrics 4, 263 (1994).

    Google Scholar 

  24. H. Watanabe, T. Mihara, H. Yoshimori, and C.A. Paz de Araujo, in Proc. of the 4th Symposium on Integrated Ferroelectrics, (Monterey, March 1992), p. 346.

  25. O.A. Aktsipetrov, A.A. Fedyanin, D.A. Klimkin, A.A. Nikulin, E.D. Mishina, A.S. Sigov, K.A. Vorotilov, M.A.C. Devillers, and Th. Rasing, Ferroelectrics 190, 143 (1997).

    Google Scholar 

  26. O.A. Aktsipetrov, A.A. Fedyanin, D.A. Klimkin, A.A. Nikulin, E.D. Mishina, A.S. Sigov, K.A. Vorotilov, C.W. Van Hasselt, M.A.C. Devillers, and Th. Rasing. Ferroelectrics 186, 215 (1996).

    Google Scholar 

  27. K.A. Vorotilov, M.I. Yanovskaya, and O.A. Dorokhova, Integrated Ferroelectrics 3, 33 (1993).

    Google Scholar 

  28. A.S. Sigov, V.I. Petrovsky, E.F. Pevtsov, K.A. Vorotilov, and A.S. Valeev, Proc. of the NATO/ASI Series 284, 427 (1995).

    Google Scholar 

  29. A. Valeev and K. Vorotilov, Electronics: Science, Technology, Buisness 34, 75 (1998) (in Russian).

    Google Scholar 

  30. W.L. Warren, D. Dimos, and R.M. Waser, MRS Bulletin 40, 7 (1996).

    Google Scholar 

  31. O. Auciello, Integrated Ferroelectrics 15, 211 (1997).

    Google Scholar 

  32. M. Klee and V. Mackens, Microelectronic Engineering 29, 186 (1995).

    Google Scholar 

  33. L.D. McMillan, C.A. Paz de Araujo, T. Roberts, J. Cuchiaro, M.C. Scott, and J.F. Scott, Ferroelectrics 2, 351 (1992).

    Google Scholar 

  34. M.N. Kamalasanan, N.D. Kumar, and S. Chandra, J. Appl. Phys. 78, 4803 (1994).

    Google Scholar 

  35. T.V. Rogova, M.I. Yanovskaya, D.U. Grudtsyna, Yu.D. Grudtsyn, and E.P. Kovsman, Russ. J. General Chem. 67, 1134 (1997) (in Russian).

    Google Scholar 

  36. V.A. Vasiljev, K.A. Vorotilov, M.I. Yanovskaya, and L.I. Solovjeva, J. Sol-Gel Science and Technology 13, 877 (1998).

    Google Scholar 

  37. K.A. Vorotilov, E.V. Orlova, V.I. Petrovsky, and E.P. Turevskaya, Electronic Techniques. Materials 4, 25 (1987) (in Russian).

    Google Scholar 

  38. K.A. Vorotilov, M.I. Yanovskaya, L.I. Solovjeva, A.S. Valeev, V.I. Petrovsky, V.A. Vasiljev, and I.E. Obvinzeva, Microelectronic Engineering 29, 41 (1995).

    Google Scholar 

  39. T. Matsuoka et al., J. Appl. Phys. 64, 3512 (1988).

    Google Scholar 

  40. R. Kudesia et al., J. Am. Ceram. Soc. 77, 3215 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.I. Yanovskaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vorotilov, K., Yanovskaya, M., Turevskaya, E. et al. Sol-Gel Derived Ferroelectric Thin Films: Avenues for Control of Microstructural and Electric Properties. Journal of Sol-Gel Science and Technology 16, 109–118 (1999). https://doi.org/10.1023/A:1008776120997

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008776120997

Navigation