Skip to main content
Log in

Characterization of the transformation from calcium-deficient apatite to β-tricalcium phosphate

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The structural changes that occur during the transformation of a Ca-deficient apatite, prepared by a wet chemical method, to β-TCP were investigated. X-ray diffraction (XRD) analysis of as-prepared samples and samples calcined at temperatures between 500 and 1100 °C showed that the transformation occurs over the temperature range 710–740 °C, under non-equilibrium conditions. The change in crystallite size with increasing calcination/sintering temperature was studied by XRD using the Scherrer formula. Fourier transform infra-red (FTIR) analysis indicated considerable structural change in samples above and below this temperature range. Changes were observed in the hydroxyl, carbonate and phosphate bands as the calcination temperature was increased from 500 to 1100 °C. Even once a single β-TCP phase is obtained at 740 °C there remains a considerable amount of structural change at temperatures between 740 and 1100 °C. This effect was illustrated by an unusual change in the lattice parameters of the β-TCP structure and significant changes in the phosphate bands of the FTIR spectra as the calcination temperature was increased. The results obtained in this study show that the combined experimental techniques of XRD and FTIR are excellent complimentary methods for characterizing structural changes that occur during phase transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. C. M. Driessens, in “Bioceramics of calcium phosphate”, edited by K. de Groot (CRC Press, Boca Raton, 1983) p. 1–32.

    Google Scholar 

  2. A. M. Gatti, D. Zaffe and G. P. Poli, Biomaterials 11 (1990) 513.

    Google Scholar 

  3. M. Akao, H. Aoki, K. Katoand A. Sato, J. Mater. Sci. 17 (1982) 343.

    Google Scholar 

  4. M. Jarcho, R. L. Salsbury, M. B. Thomas and R. H. Doremus, ibid. 14 (1979) 142.

    Google Scholar 

  5. R. Famery, N. Richard and P. Boch, Ceram. Inter. 20 (1994) 327.

    Google Scholar 

  6. E. R. Kreidler and F. A. Hummel, Inorg. Chem. 6 (1967) 884.

    Google Scholar 

  7. L. Yubao, C. P. A. T. Klein, S. Van De Meer and K. De Groot, J. Mater. Sci.: Mater. Med. 5 (1994) 263.

    Google Scholar 

  8. J. J. Prieto Valdés, J. Ortiz López, G. Rueda Morales, G. Pacheco Malagon and V. Prieto Gortcheva, ibid. 8 (1997) 297.

    Google Scholar 

  9. A. Mortier, J. Lemaitre and P. G. Rouxhet, Thermochemica Acta 143 (1989) 265.

    Google Scholar 

  10. A. Mortier, J. Lemaitre, L. Rodrique and P. G. Rouxhet, J. Solid State Chem. 78 (1989) 215.

    Google Scholar 

  11. A. C. Larson, R. B. Von Dreele and M. Lujan JR, GSAS—Generalized Crystal Structure Analysis System, Neutron Scattering Center, Los Alamos National Laboratory, California (1990).

    Google Scholar 

  12. M. I. Kay, R. A. Young and A. S. Posner, Nature 204 (1964) 1050.

    Google Scholar 

  13. B. Dickens, L. W. Schroeder and W. E. Brown, J. Solid State Chem. 10 (1974) 232.

    Google Scholar 

  14. PDF Card no. 9–432, ICDD, Newton Square, Pennsylvania, USA.

  15. PDF Card no. 9–169, ICDD, Newton Square, Pennsylvania, USA.

  16. I. R. Gibson, M. Akao, S. M. Best and W. Bonfield in “Bioceramics 9”, edited by T. Kokubo, T. Nakamura and F. Miyaji (University Press, UK, 1996) p. 173.

    Google Scholar 

  17. I. Rehman and W. Bonfield, J. Mater. Sci.: Mater. Med. 8 (1997) 1.

    Google Scholar 

  18. L. Yubao, PhD Thesis, University of Leiden, Netherlands (1994).

  19. R. Z. Legeros, J. P. Legeros, G. Daculsi and R. Kijkowska, in “Encyclopedic Handbook of Biomaterials and Bioengineering”, edited by D. L. Wise, D. J. Trantolo, D. E. Altobelli, M. J. Yaszemski, J. D. Gresser and E. R. Schwartz (Marcel Dekker, Inc., 1995) p. 1429.

  20. K. Ishikawa, P. Ducheyne and S. Radin, J. Mater. Sci.: Mater. Med. 4 (1993) 165.

    Google Scholar 

  21. P. N. De Aza, C. Santos, A. Pazo, S. De Aza, R. Cusco and L. Artus, Chem. Mater. 9 (1997) 912.

    Google Scholar 

  22. D. G. A. Nelson and J. D. B. Featherstone, Calc. Tiss. Int. 34 (1982) 69.

    Google Scholar 

  23. H. Elfeki, C. Rey and M. Vignoles, ibid. 49 (1991) 269.

    Google Scholar 

  24. R. Z. Legeros, G. Kijkowska, J. P. Legeros, T. Abergas and H. Bleiwas, J. Dent. Res. 66 (1987) 190.

    Google Scholar 

  25. J. C. Elliott, D. W. Holcomb and R. A. Young, Calc. Tiss. Int. 37 (1985) 372.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibson, I.R., Rehman, I., Best, S.M. et al. Characterization of the transformation from calcium-deficient apatite to β-tricalcium phosphate. Journal of Materials Science: Materials in Medicine 11, 533–539 (2000). https://doi.org/10.1023/A:1008961816208

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008961816208

Keywords

Navigation