Skip to main content
Log in

Metal nanoclusters supported on metal oxide thin films: bridging the materials gap

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Characterization and reactivity studies were performed on model catalysts comprised of metal clusters supported on metal oxide thin films. The thin films are prepared by vaporizing the parent metal onto a refractory metal substrate in an O2 environment. The oxide films are sufficiently conductive via defects and tunneling to the substrate that the use of charged particle spectroscopies does not lead to any adverse charging effects. Numerous characterization techniques demonstrated that both spectroscopically and chemically these thin films are comparable to the analogous bulk metal oxides. Model supported catalysts were subsequently prepared by vapor‐depositing catalytically‐interesting metals onto these thin film oxide supports. This deposition method realizes tight control over cluster size and, therefore, represents an ideal approach to studying size‐dependent chemical and physical properties. Reactivity studies established the validity of the supported systems as models of conventional catalysts. Furthermore, the use of these model catalysts provides a bridge between fundamental studies of single crystal reactivities and applied studies of high‐surface‐area catalyst activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.W. Goodman, Surf. Rev. Lett. 2 (1995) 9.

    Article  CAS  Google Scholar 

  2. D.W. Goodman, R.D. Kelley, T.E. Madey and J.T. Yates, Jr., J. Catal. 63 (1980) 226.

    Article  CAS  Google Scholar 

  3. R.A. Campbell and D.W. Goodman, Rev. Sci. Instrum. 63 (1992) 172.

    Article  Google Scholar 

  4. X. Xu and D.W. Goodman, Appl. Phys. Lett. 61 (1992) 774.

    Article  CAS  Google Scholar 

  5. J.-W. He, X. Xu, J.S. Corneille and D.W. Goodman, Surf. Sci. 279 (1992) 119.

    Article  CAS  Google Scholar 

  6. X. Xu and D.W. Goodman, Surf. Sci. 282 (1993) 323.

    Article  CAS  Google Scholar 

  7. P.J. Chen and D.W. Goodman, Surf. Sci. 312 (1994) L767.

    Article  CAS  Google Scholar 

  8. M.-C. Wu and D.W. Goodman, J. Phys. Chem. 98 (1994) 9874.

    Article  CAS  Google Scholar 

  9. D.W. Goodman, J. Vac. Sci. Technol. A 14 (1996) 1526.

    Article  CAS  Google Scholar 

  10. W.S. Oh, C. Xu, G. Liu, D.Y. Kim and D.W. Goodman, J. Vac. Sci. Technol. A 15 (1997) 1710.

    Article  CAS  Google Scholar 

  11. Q. Guo, W.S. Oh and D.W. Goodman, Surf. Sci. 437 (1999) 49.

    Article  CAS  Google Scholar 

  12. M.C. Wu, J.S. Corneille, C.A. Estrada, J.W. He and D.W. Goodman, Chem. Phys. Lett. 182 (1991) 472.

    Article  CAS  Google Scholar 

  13. M.C. Wu, J.S. Corneille, J.W. He, C.A. Estrada and D.W. Goodman, J. Vac. Sci. Technol. A 10 (1992) 1467.

    Article  CAS  Google Scholar 

  14. M.C. Wu, C.A. Estrada, J.S. Corneille and D.W. Goodman, J. Chem. Phys. 96 (1992) 3892.

    Article  CAS  Google Scholar 

  15. J.S. Corneille, J.W. He and D.W. Goodman, Surf. Sci. 306 (1994) 269.

    Article  CAS  Google Scholar 

  16. C.M. Truong, M.C. Wu and D.W. Goodman, J. Chem. Phys. 97 (1993) 9447.

    Article  Google Scholar 

  17. C.M. Truong, M.C. Wu and D.W. Goodman, J. Am. Chem. Soc. 115 (1993) 3647.

    Article  CAS  Google Scholar 

  18. M.C. Wu, C.M. Truong and D.W. Goodman, J. Phys. Chem. 97 (1993) 9425.

    Article  CAS  Google Scholar 

  19. M.C. Wu, C.M. Truong and D.W. Goodman, J. Phys. Chem. 97 (1993) 4182.

    Article  CAS  Google Scholar 

  20. J.S. Corneille, J.W. He and D.W. Goodman, Surf. Sci. 338 (1995) 221.

    Article  Google Scholar 

  21. X. Xu, S. Vesecky and D.W. Goodman, Science 258 (1992) 788.

    CAS  Google Scholar 

  22. X. Xu and D.W. Goodman, J. Phys. Chem. 97 (1993) 683.

    Article  CAS  Google Scholar 

  23. P.J. Berlowitz, C.H.F. Peden and D.W. Goodman, J. Phys. Chem. 92 (1988) 5213.

    Article  CAS  Google Scholar 

  24. K. Coulter, X. Xu and D.W. Goodman, J. Phys. Chem. 98 (1994) 1245.

    Article  CAS  Google Scholar 

  25. D.R. Rainer, S.M. Vesecky, M. Koranne, W.S. Oh and D.W. Goodman, J. Catal. 167 (1997) 234.

    Article  CAS  Google Scholar 

  26. D.R. Rainer C. Xu, P.M. Holmblad and D.W. Goodman, J. Vac. Sci. Technol. A 15 (1997) 1653.

    Article  CAS  Google Scholar 

  27. D.R. Rainer, M. Koranne, S.M. Vesecky and D.W. Goodman, J. Phys. Chem. 101 (1997) 10769.

    CAS  Google Scholar 

  28. M.-C. Wu and D.W. Goodman, J. Phys. Chem. 98 (1994) 9874.

    Article  CAS  Google Scholar 

  29. C. Xu, X. Lai and D.W. Goodman, Faraday Discuss. 105 (1996) 247.

    Article  CAS  Google Scholar 

  30. C. Xu, W.S. Oh, G. Liu, D.Y. Kim and D.W. Goodman, J. Vac. Sci. Technol. A 15 (1997) 1261.

    Article  CAS  Google Scholar 

  31. L.E. Davis, N.C. MacDonald, P.W. Palmberg, G.E. Riach and R.E. Weber, Handbook of Auger Electron Spectroscopy (Physical Electronics Division, Perkin-Elmer, Eden Prairie, MN, 1976).

    Google Scholar 

  32. J.G. Chen, J.E. Crowell and J.T. Yates, Jr., Phys. Rev. B 35 (1987) 5299.

    Article  CAS  Google Scholar 

  33. F.L. Battye, J.G. Jenkin, J. Liesegang and R.C.G. Leckey, Phys. Rev. B 9 (1974) 2887.

    Article  CAS  Google Scholar 

  34. J.L. Erskine and R.L. Strong, Phys. Rev. B 25 (1982) 5547.

    Article  CAS  Google Scholar 

  35. R.L. Strong, B. Firey, F.W. de Wette and J.L. Erskine, Phys. Rev. B 26 (1982) 3483.

    Google Scholar 

  36. J.E. Crowell, J.G. Chen and J.T. Yates, Jr., Surf. Sci. 165 (1986) 37.

    Article  CAS  Google Scholar 

  37. P.J. Chen, M.L. Colaianni and J.T. Yates, Jr., Phys. Rev.B 41 (1990) 8025.

    Article  CAS  Google Scholar 

  38. B.G. Frederick, G. Apai and T.N. Rhodin, J. Electron Spetrosc. Relat. Phenom. 54/55 (1990) 415.

    Article  Google Scholar 

  39. B.G. Frederick, G. Apai and T.N. Rhodin, Phys. Rev. B 44 (1991) 1880.

    Article  CAS  Google Scholar 

  40. P.A. Thiry, M. Liehr, J.J. Pireaux and R. Caudano, Phys. Rev. B 29 (1984) 4824.

    Article  CAS  Google Scholar 

  41. J.-W. He, C.A. Estrada, J.S. Corneille, M.-C. Wu and D.W. Goodman, Surf. Sci. 261 (1992) 164.

    Article  CAS  Google Scholar 

  42. J.-W. He, C.A. Estrada, J.S. Corneille, M.-C. Wu and D.W. Goodman, J. Vac. Sci. Technol. A 10 (1992) 2248.

    Article  CAS  Google Scholar 

  43. G. Blyholder, J. Phys. Chem. 68 (1964) 2772.

    CAS  Google Scholar 

  44. L. Chen, R. Wu, N. Kioussis and Q. Zhang, Chem. Phys. Lett. 290 (1998) 255.

    Article  CAS  Google Scholar 

  45. R.T. Wichtendahl, M. Rodriguez-Rodrigo, U. Härtel, H. Kuhlenbeck and H.-J. Freund, Surf. Sci. 423 (1999) 90.

    Article  CAS  Google Scholar 

  46. C. Xu and D.W. Goodman, Chem. Phys. Lett. 265 (1997) 341.

    Article  CAS  Google Scholar 

  47. M.J. Stirniman, C. Huang, R. Scott Smith, S.A. Joyce and B.D. Kay, J. Chem. Phys. 105 (1996) 1295.

    Article  CAS  Google Scholar 

  48. L.E. Davis, Handbook of Auger Electron Spectroscopy, 2nd Ed. (Perkin-Elmer, Eden Prairie, MN).

  49. D.R. Rainer, C. Xu and D.W. Goodman, J. Mol. Catal. A 119 (1997) 307.

    Article  CAS  Google Scholar 

  50. D.R. Rainer, M.-C. Wu, D.I. Mahon and D.W. Goodman, J. Vac. Sci. Technol. A 14 (1996) 1184.

    Article  CAS  Google Scholar 

  51. J.S. Szanyi, W.K. Kuhn and D.W. Goodman, J. Vac. Sci. Technol. A 11 (1993) 1969.

    Article  CAS  Google Scholar 

  52. X. Lai, T.P. St.Clair, M. Valden and D.W. Goodman, Prog. Surf. Sci. 59 (1998) 25.

    Article  CAS  Google Scholar 

  53. M. Gautier, J.P. Duraud, L. Pham Van and M.J. Guittet, Surf. Sci. 250 (1991) 71.

    Article  CAS  Google Scholar 

  54. P.N. First, J.A. Stroscio, R.A. Dragoset, D.T. Pierce and R.J. Celotta, Phys. Rev. Lett. 63 (1989) 1416.

    Article  CAS  Google Scholar 

  55. M. Suzuki and T. Fukuda, Phys. Rev. B 44 (1991) 3187.

    Article  CAS  Google Scholar 

  56. X. Xu, J. Szanyi, Q. Xu and D.W. Goodman, Catal. Today 21 (1994) 57.

    Article  CAS  Google Scholar 

  57. N.W. Cant, P.C. Hicks and B.S. Lennon, J. Catal. 54 (1978) 372.

    Article  CAS  Google Scholar 

  58. M. Valden, X. Lai and D.W. Goodman, Science 281 (1998) 1647.

    Article  CAS  Google Scholar 

  59. M. Valden, S. Pak, X. Lai and D.W. Goodman, Catal. Lett. 56 (1998) 7.

    Article  CAS  Google Scholar 

  60. G.R. Bamwenda, S. Tsubota, T. Nakamura and M. Haruta, Catal. Lett. 44 (1997) 83.

    Article  CAS  Google Scholar 

  61. S.H. Oh and C.C. Eickel, J. Catal. 128 (1991) 526.

    Article  CAS  Google Scholar 

  62. S.M. Vesecky, P.J. Chen, X. Xu and D.W. Goodman, J. Vac. Sci. Technol. A 13 (1995) 1539.

    Article  CAS  Google Scholar 

  63. S.M. Vesecky, J. Vac. Sci. Technol. A 14 (1996) 1457.

    Article  CAS  Google Scholar 

  64. B.K. Cho, J. Catal. 131 (1991) 74.

    Article  CAS  Google Scholar 

  65. D.W. Goodman, Surf. Sci. Lett. 123 (1982) L679.

    Article  CAS  Google Scholar 

  66. J.L. Carter, J.A. Cusumano and J.H. Sinfelt, J. Phys. Chem. 70 (1966) 2257.

    CAS  Google Scholar 

  67. M.C. Desjonqueres and F. Cyrot-Lackmann, J. Chem. Phys. 64 (1976) 3707.

    Article  CAS  Google Scholar 

  68. M. Kiskinova and D.W. Goodman, Surf. Sci. 108 (1981) 64.

    Article  CAS  Google Scholar 

  69. D.W. Goodman, Catal. Today 12 (1992) 189.

    Article  CAS  Google Scholar 

  70. G.A. Martin, J. Catal. 60 (1979) 452.

    Article  CAS  Google Scholar 

  71. K. Coulter and D.W. Goodman, J. Phys. Chem. 98 (1993) 1245.

    Article  Google Scholar 

  72. D.W. Goodman, Annu. Rev. Phys. Chem. 37 (1986) 425.

    Article  CAS  Google Scholar 

  73. M.A. Vannice, J. Catal. 44 (1976) 152.

    Article  CAS  Google Scholar 

  74. M.A. Vannice, Catal. Rev. Sci. Eng. 14 (1976) 153.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

St.Clair, T.P., Goodman, D.W. Metal nanoclusters supported on metal oxide thin films: bridging the materials gap. Topics in Catalysis 13, 5–19 (2000). https://doi.org/10.1023/A:1009020502894

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009020502894

Navigation