Skip to main content
Log in

ISORROPIA: A New Thermodynamic Equilibrium Model for Multiphase Multicomponent Inorganic Aerosols

  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

A computationally efficient and rigorous thermodynamic model that predicts the physical state and composition of inorganic atmospheric aerosol is presented. One of the main features of the model is the implementation of mutual deliquescence of multicomponent salt particles, which lowers the deliquescence point of the aerosol phase.

The model is used to examine the behavior of four types of tropospheric aerosol (marine, urban, remote continental and non-urban continental), and the results are compared with the predictions of two other models currently in use. The results of all three models were generally in good agreement. Differences were found primarily in the mutual deliquescence humidity regions, where the new model predicted the existence of water, and the other two did not. Differences in the behavior (speciation and water absorbing properties) between the aerosol types are pointed out. The new model also needed considerably less CPU time, and always shows stability and robust convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, A. G., Harrison, R. M., Erisman, J. W. (1989) Field measurements of the dissociation of ammonium nitrate and ammonium chloride aerosols. Atmos. Environ. 23, 1591-1599.

    Google Scholar 

  • Bassett, M., and Seinfeld, J. H. (1983) Atmospheric equilibrium model of sulfate and nitrate aerosols. Atmos. Environ. 17, 2237-2252.

    Google Scholar 

  • Bassett, M., and Seinfeld, J. H. (1984) Atmospheric equilibrium model of sulfate and nitrate aerosols-II. Particle size analysis. Atmos. Environ. 18, 1163-1170.

    Google Scholar 

  • Bromley, L. A. (1973) Thermodynamic properties of strong electrolytes in aqueous solutions. AIChE J. 19, 313-320.

    Google Scholar 

  • Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G. (1987) Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326, 655-661.

    Google Scholar 

  • Denbigh, K. (1981) The principles of chemical equilibrium.Fourth Ed., Cambridge University Press, Cambridge.

    Google Scholar 

  • Deepak, A. and Gali, G. (1991) The international global aerosol program (IGAP) plan.Deepak Publishing, Hampton, Virginia.

    Google Scholar 

  • Fitzgerald, J. W. (1991) Marine aerosols: A review. Atmos. Environ. 25A, 533-545.

    Google Scholar 

  • Heintzenberg, J. (1989) Fine particles in the global troposphere, A review. Tellus, 41B, 149-160.

    Google Scholar 

  • Hildemann, L. M., Russell, A. G. and Cass, G. R. (1984) Ammonia and nitric acid concentrations in equilibrium with atmospheric aerosols: Experiment vs. Theory. Atmos. Environ. 18, 1737-1750.

    Google Scholar 

  • Jacobson, M. Z., Tabazadeh, A., Turco, R. P. (1996) Simulating equilibrium within aerosols and nonequilibrium between gases and aerosols. J. Geophys. Res., 101, 9079-9091.

    Google Scholar 

  • Kim, Y. P., Seinfeld, J. H. and Saxena, P. (1993) Atmopsheric gas-aerosol equilibrium I. Thermodynamic model. Aerosol Sci. Technol., 19, 157-181.

    Google Scholar 

  • Kim, Y. P., Seinfeld, J. H. and Saxena, P. (1993b) Atmopsheric gas-aerosol equilibrium II. Analysis of common approximations and activity coefficient methods. Aerosol Sci. Technol. 19, 182-198.

    Google Scholar 

  • Kusik, C. L. and Meissner, H. P. (1978) Electrolyte activity coefficients in inorganic processing. AIChE Symp. Series 173, 14-20.

    Google Scholar 

  • Meng, Z. and Seinfeld, J. H. (1996) Time scales to achieve atmospheric gas-aerosol equilibrium for volatile species., Atmos. Environ. 30, 2889-2900.

    Google Scholar 

  • Pandis, S. N., Wexler, A. S., Seinfeld, J. H. (1995) Dynamics of tropospheric aerosols. J. Phys. Chem., 99, 9646-9659.

    Google Scholar 

  • Pilinis, C. and Seinfeld, J. H. (1987) Continued development of a general equilibrium model for inorganic multicomponent atmospheric aerosols. Atmos. Environ. 21, 2453-2466.

    Google Scholar 

  • Pilinis, C., Pandis, S. N., Seinfeld, J. H. (1995) Sensitivity of direct climate forcing by atmospheric aerosols to aerosols size and composition. J. Geophys. Res., 100, 18739-18754.

    Google Scholar 

  • Pitzer, K. S. and Mayorga, G. (1973) Thermodynamics of electrolytes - II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem., 77, 2300-2308.

    Google Scholar 

  • Potukuchi, S. and Wexler, A. S. (1995a) Identifying solid-aqueous phase transitions in atmospheric aerosols - I. Neutral-acidity solutions. Atmos. Environ., 29, 1663-1676.

    Google Scholar 

  • Potukuchi, S. and Wexler, A. S. (1995b) Identifying solid-aqueous phase transitions in atmospheric aerosols - II. Acidic solutions. Atmos. Environ. 29, 3357-3364.

    Google Scholar 

  • Quinn, P. K., Asher, W. E. and Charlson, R. J. (1992) Equilibria of the marine multiphase ammonia system. J. Atmos. Chem., 14, 11-30.

    Google Scholar 

  • Robinson, R. A. and Stokes, R. H. (1965) Electrolyte solutions.Second Ed., Butterworths, London.

    Google Scholar 

  • Russell, L. M., Pandis, S. N., Seinfeld, J. H. (1994) Aerosol production and growth in the marine boundary layer. J. Geophys. Res., 99, 20989-21003.

    Google Scholar 

  • Saxena, P. and Peterson, T. W. (1981) Thermodynamics of multicomponent electrolytic aerosols. J. Coll. Interf. Sci. 79, 496-510.

    Google Scholar 

  • Saxena, P., Hudischewsky, A. B., Seigneur, C., Seinfeld, J. H. (1986) A comparative study of equilibrium approaches to the chemical characterization of secondary aerosols. Atmos. Environ., 20, 1471-1483.

    Google Scholar 

  • Saxena, P., Mueller, P. K., Kim, Y. P., Seinfeld, J. H., Koutrakis, P. (1993) Coupling thermodynamic theory with measurments to characterize acidity of atmospheric aerosols. Aeros. Sci. Tech., 19, 279-293.

    Google Scholar 

  • Tang, I. N. and Munkelwitz, H. R. (1993) Composition and temperature dependance of the deliquescence properties of hygroscopic aerosols. Atmos. Environ., 27A, 467-473.

    Google Scholar 

  • Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H., Harlow, I., Bailey, S. M., Churney, K. L., Nuttall, R. L. (1982) The NBS tables of chemical thermodynamic properties. J. Phys. Chem. Ref. Data.Vol. 11, Suppl. 2

  • Wexler, A. S. and Seinfeld, J. H. (1991) Second-generation inorganic aerosol model. Atmos. Environ. 25A, 2731-2748.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nenes, A., Pandis, S.N. & Pilinis, C. ISORROPIA: A New Thermodynamic Equilibrium Model for Multiphase Multicomponent Inorganic Aerosols. Aquatic Geochemistry 4, 123–152 (1998). https://doi.org/10.1023/A:1009604003981

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009604003981

Navigation