Skip to main content
Log in

Bayesian spatial prediction

  • Published:
Environmental and Ecological Statistics Aims and scope Submit manuscript

Abstract

This paper presents a complete Bayesian methodology for analyzing spatial data, one which employs proper priors and features diagnostic methods in the Bayesian spatial setting. The spatial covariance structure is modeled using a rich class of covariance functions for Gaussian random fields. A general class of priors for trend, scale, and structural covariance parameters is considered. In particular, we obtain analytic results that allow easy computation of the predictive distribution for an arbitrary prior on the parameters of the covariance function using importance sampling. The computations, as well as model diagnostics and sensitivity analysis, are illustrated with a set of precipitation data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, S. and DeMarsily, G. (1987) Comparison of geostatistical methods for estimating transmissivity using data on transmissivity and specific capacity. Water Resources Research, 23, 1717-37.

    Google Scholar 

  • Aslanidou, H., Dey, D.K. and Sinha, D., (1998) Bayesian analysis of multivariate survival data using Monte Carlo methods. Canadian Journal of Statistics, 26, 33-48.

    Google Scholar 

  • Beek, E.G., Stein, A., and Janssen, L.L.F. (1992) Spatial variability and interpolation of daily precipitation amount. Stochastic Hydrology and Hydraulics, 6, 304-20.

    Google Scholar 

  • Besag, J. (1974) Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society, Series B, 36, 192-236.

    Google Scholar 

  • Box, G.E.P. (1980) Sampling and Bayes' inference in scientific modelling and robustness. Journal of the Royal Statistical Society, Series A, 143, 383-430.

    Google Scholar 

  • Brown, P.J., Le, N.D., and Zidek, J.V. (1994) Multivariate spatial interpolation and exposure to air pollutants. Can. J. Statist., 22, 489-509.

    Google Scholar 

  • Chua, S.H. and Bras, R.L. (1982) Optimal estimators of mean areal precipitation in regions of orographic influence. Journal of Hydrology, 57, 23-48.

    Google Scholar 

  • Cressie, N. and Zimmerman, D.L. (1992) On the Stability of the Geostatistical Method. Mathematical Geology, 24, 45-59.

    Google Scholar 

  • Cressie, N. (1991) Statistics for Spatial Data, John Wiley, New Jersey.

    Google Scholar 

  • Cui, H., Stein, A., and Myers, D.E. (1995) Extension of spatial information, Bayesian kriging and updating of prior variogram parameters. Environmetrics, 4, 373-84.

    Google Scholar 

  • Daly, C., Neilson, R.P., and Phillips, D.L. (1994) A statistical-topographic model for mapping climatological precipitation over mountainous terrain. Journal of Applied Hydrology, 33, 140-58.

    Google Scholar 

  • De Oliveira, V., Kedem, B., and Short, D.A. (1997) Bayesian prediction of transformed Gaussian random fields. J. Americ. Statist. Assoc., 92, 1422-33.

    Google Scholar 

  • Dey, D.K., Gelfand, A.E., Swartz, T., and Vlachos, P. (1995) Simulation-based model checking for hierarchical models, Technical Report No. 95-29, Department of Statistics, University of Connecticut.

  • Dingman, S.L., Seely-Reynolds, D.M., and Reynolds, R.C. III. (1988) Application of kriging to estimating mean annual precipitation in a region of orographic influence. Water Resources Bulletin, 24, 329-39.

    Google Scholar 

  • Geisser, S. and Eddy, W.F. (1979) A predictive approach to model selection. Journal of the American Statistical Association, 74, 153-60.

    Google Scholar 

  • Gelfand, A.E. and Dey, D.K. (1994) Bayesian model choice: asymptotics and exact calculations. Journal of the Royal Statistical Society Series B, 56, 501-14.

    Google Scholar 

  • Handcock, M.S. and Stein, M.L. (1993) A Bayesian analysis of kriging. Technometrics, 35, 403-10.

    Google Scholar 

  • Hevesi, J.A., Jstok, J.D., and Flint, A.L. (1992) Precipitation estimation in mountainous terrain using multivariate geostatistics, part I and part II. Journal of Applied Meteorology, 31, 661-88.

    Google Scholar 

  • Hjort, N.L. and Omre, H. (1994) Topics in spatial statistics. Scandinavian Journal of Statistics, 21, 289-357.

    Google Scholar 

  • Journel, A.G. and Huijbregts, C.J. (1978) Mining Geostatistics, Academic Press, San Diego.

    Google Scholar 

  • Kitanidis, P.K. (1986) Parameter uncertainty in estimation of spatial functions: Bayesian analysis. Water Resources Research, 22, 499-507.

    Google Scholar 

  • Kitanidis, P.K. and Lane, R.W. (1985) Maximum likelihood parameter estimation of hydrologic spatial processes by the Gauss-Newton method. Journal of Hydrology, 79, 53-71.

    Google Scholar 

  • Le, N.D. and Zidek, J.V. (1992) Interpolation with uncertain spatial covariances: a Bayesian alternative to kriging. Journal of Multivariate Analysis, 43, 351-74.

    Google Scholar 

  • Le, N.D., Sun, W., and Zidek, J.V. (1997) Bayesian multivariate spatial interpolation with data missing by design. J. R. Statist. Soc. B., 59, 501-10.

    Google Scholar 

  • Mallick, B.K. and Gelfand, A.E. (1994) Generalized linear models with unknown link functions. Biometrika, 81, 137-45.

    Google Scholar 

  • Matérn, B. (1986) Spatial Variation, (2nd ed.)., Springer-Verlag, Berlin: New York

    Google Scholar 

  • Meng, X.L. (1994) Posterior predictive p-values. Annals of Statistics, 22, 1142-60.

    Google Scholar 

  • Ripley, B.D. (1981) Spatial Statistics, John Wiley, New York.

    Google Scholar 

  • Ripley, B.D. (1988) Statistical Inference for Spatial Processes, Cambridge University Press.

  • Rubin, D.B. (1984) Bayesianly justifiable and relevant frequency calculations for the applied statistician. Annals of Statistics, 12, 1151-72.

    Google Scholar 

  • Sampson, P.D. and Guttorp, P. (1992) Nonparametric estimation of nonstationary spatial covariance structure. J. Americ. Statist. Assoc., 87, 108-19.

    Google Scholar 

  • Sánchez-Azofeifa, G.A. (1994) En el uso de estadisticas especiales para la definicion de superficies de precipitacion en cuencas tropicales, Technical report, Complex System Research Center, University of New Hampshire.

  • Stone, M. (1974) Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society, Series B, 36, 111-47.

    Google Scholar 

  • Sun, W. (1998) Comparison of a cokriging method with a Bayesian alternative. Environmetrics, 9, 445-57.

    Google Scholar 

  • Tanner, M.A. (1996) Tools for Statistical Inference, (3rd ed.). Springer-Verlag, Berlin: New York

    Google Scholar 

  • Taylor, C.C. and Burrough, P.A. (1986) Multiscale sources of spatial variation in soil. III. Improved methods for fitting the nested model to one-dimensional semivariograms. Mathematical Geology, 18, 811-21.

    Google Scholar 

  • Warnes, J.J. (1986) A sensitivity analysis for universal kriging. Mathematical Geology, 18, 653-76.

    Google Scholar 

  • Zimmerman, D.L. and Harville, D.A. (1991) A random field approach to the analysis of field-plot experiments and other spatial experiments. Biometrics, 47, 223-29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaudard, M., Karson, M., Linder, E. et al. Bayesian spatial prediction. Environmental and Ecological Statistics 6, 147–171 (1999). https://doi.org/10.1023/A:1009614003692

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009614003692

Navigation