Skip to main content
Log in

Production of ROL gene transformed plants of Rosa hybrida L. and characterization of their rooting ability

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Transgenic plants of the rootstock Rosa hybrida L. cv. Moneyway were produced via a two-step procedure. First, kanamycin-resistant roots were generated on stem slices from micropropagated shoots, which were cocultivated with Agrobacterium tumefaciens containing the neomycin phosphotransferase II (NPTII) gene for conferring kanamycin resistance, together with individual ROL genes from A. rhizogenes. Root formation was quite efficient and up to two kanamycin-resistant roots per stem slice were produced. In the second step, these roots were used to regenerate transgenic plants via somatic embryogenesis. Although regeneration lasted up to 12 months, production of several transformants was successfully accomplished. Untransformed escapes were not found, indicating that the initial selection on kanamycin resistance was reliable.

The presence of a combination of ROLA, B and C genes enhanced adventitious root formation on micropropagated shoots and explants of stems and leaves. It appears that the auxin sensitivity was increased to such a degree that cells were able to respond even to endogenous auxins present in shoots and leaves. Rooting experiments in greenhouse demonstrated that adventitious root formation on cuttings was improved threefold upon introduction of these ROL genes. It is concluded that a method was developed for the production of ROL gene transformed roses with improved rooting characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aháe J, Duhoux E: Root culturing of Faidherbia=Acacia albidaas a source of explants for shoot regeneration. Plant Cell Tiss Organ Cult 36: 219–225 (1994).

    Google Scholar 

  2. Burger DW, Hackett WP: Gradients of adventitious bud formation on excised epicotyl and root section of Citrus. Plant Sci 43: 229–232 (1986).

    Article  Google Scholar 

  3. Costantino P, Spanò L, Pomponi m, Benvenuto E, Ancora G: The T-DNA of Agrobacterium rhizogenesis transmitted through meiosis to the progeny of hairy root plants. J Mol Appl Genet 2: 465–470 (1984).

    PubMed  Google Scholar 

  4. Derks FHM, Van Dijk AJ, Hänisch ten Cate CH, Florack DEA, Dubois LAM, De Vries DP. Prolongation of vase life of cut roses via introduction of genes coding for antibacterial activity. Somatic embryogenesis and Agrobacterium-mediated transformation. Acta Hort 405, 205–210 (1995).

    Google Scholar 

  5. Estruch JJ, Chriqui D, Grossmann K, Schell J, Spena A: The plant oncogene ROLCis responsible for the release of cytokinins from glucoside conjugates. EMBOJ 10: 2889–2895 (1991).

    Google Scholar 

  6. Estruch JJ, Schell J, Spena A: The protein encoded by the ROLBplant oncogene hydrolyses indole glucosides. EMBO J 10: 3125–3128 (1991).

    PubMed  Google Scholar 

  7. Feinberg AP, Vogelstein B: Atechnique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132: 6–13 (1983).

    PubMed  Google Scholar 

  8. Filippini F, Lo Schiavo F, Terzi m, Constantino P, Trovato M: The plant oncogene ROLBalters binding of auxin to plant membranes. Plant Cell Physiol 35: 767–771 (1994).

    Google Scholar 

  9. Firoozabady E, Moy Y, Courtney-Gutterson N, Robinson K: Regeneration of transgenic rose (Rosa hybrida) plants from embryogenic tissue. Bio/technology 12: 609–613 (1994).

    Google Scholar 

  10. Genstat 5 Committee: Genstat 5 Reference Manual, pp. 749. Clarendon Press, Oxford (1988).

    Google Scholar 

  11. Jefferson RA, Kavanagh TA, Bevan MW: GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901–3907 (1987).

    PubMed  Google Scholar 

  12. Kolova L: Regeneration of adventitious shoots and embryos from root segments of in vitrocultured colt cherry (Prunus pseudocerasus× Prunus AviumL.) plants. Biotechnol Biotechnol Eq 7: 53–58 (1993).

    Google Scholar 

  13. Lambert C, Tepfer D: Use of Agrobacterium rhizogenesto create transgenic apple trees having an altered organogenic response to hormones. Theor Appl Genet 85: 105–109 (1992).

    Google Scholar 

  14. Maurel C, Barbier-Brygoo H, Spena A, Tempá J, Guern J: Single ROLgenes from A. rhizogenesT1-DNA alter some of the cellular responses to auxin in Nicotiana tabacum. Plant Physiol 97: 212–216 (1991).

    Google Scholar 

  15. Maurel C, Leblanc N, Barbier-Brygoo H, Perrot-Rechenmann C, Bouvier-Durand M, Guern J: Alterations of auxin perception in ROLB-transformed tobacco protoplasts. Plant Physiol 105: 1209–1215 (1994).

    PubMed  Google Scholar 

  16. Murashige T, Skoog F: A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497 (1962).

    Google Scholar 

  17. Nilsson O, Crozier A, Schmülling T, Sandberg G, Olsson O: Indole-3-acetic acid homeostasis in transgenic tobacco plants expressing the Agrobacterium rhizogenes ROLBgene. Plant J 3: 681–689 (1993).

    Google Scholar 

  18. Nilsson O, Moritz T, Imbault N, Sandberg G, Olsson O: Hormonal characterization of tobacco plants expressing the ROLCgene of Agrobacterium rhizogenesT-DNA. Plant Physiol 102: 363–372 (1993).

    PubMed  Google Scholar 

  19. Quoirin M, Lepoivre Ph, Boxus Ph: Un premier bilan de 10 annáes de recherches sur les cultures de máristèmes et la multiplication in vitrode fruitiers ligneux. In: Comptes Rendus de Recherches 1976- 1977 et Rapports de Synthèse Station des Cultures des Fruits et Maraîch., pp. 93–117. Gembloux, Belgium (1977).

    Google Scholar 

  20. Rugini E, Pellegrineschi A, Mencuccini M, Mariotti D: Increase of rooting ability in the woody species kiwi (Actenidia deliciosaA. Chev.) by transformation with Agrobacterium rhizogenes rolgenes. Plant Cell Reports 10: 291–295 (1991).

    Google Scholar 

  21. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  22. Schenk RU, Hildebrandt AC: Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50: 199–204 (1972).

    Google Scholar 

  23. Schmülling T, Schell J, Spena A: Single genes from Agrobacterium rhizogenesinfluence plant development. EMBO J 7: 2621–2629 (1988).

    Google Scholar 

  24. Spena A, Schmülling T, Koncz C, Schell JS: Independent and synergistic activity of ROLA, Band Cloci in stimulating abnormal growth in plants. EMBO J 6: 3891–3899 (1987).

    Google Scholar 

  25. Tepfer D: Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 37: 959–967 (1984).

    Article  PubMed  Google Scholar 

  26. van Altvorst AC, Riksen T, Koehorst H, Dons JJM: Transgenic carnations obtained by Agrobacterium tumefaciens-mediated transformation of leaf explants. Transgenic Res 4: 105–113 (1995).

    Google Scholar 

  27. Vancanneyt G, Schmidt R, O'Connor-Sanchez A, Willmitzer L, Rocha-Sosa M: Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacteriummediated plant transformation. Mol Gen Genet 220: 245–250 (1990).

    Article  PubMed  Google Scholar 

  28. van der Beek JG, Verkerk R, Zabel P, Lindhout P: Mapping strategy for resistance genes in tomato based on RFLPs between cultivars: CF 9(resistance to Cladosporium fulvum) on chromosome 1. Theor Appl Genet 84: 106–112 (1992).

    Google Scholar 

  29. van der Krieken WM, Breteler H, Visser MHM, Mavridou D: The role of the conversion of IBA into IAA on root regeneration in apple. Introduction of a test system. Plant Cell Rep 12: 203–206 (1993).

    Google Scholar 

  30. van der Salm TPM, van der Toorn CJG, Hänisch ten Cate ChH, Dubois LAM, de Vries DP, Dons JJM: Importance of the iron chelate formula for micropropagation of Rosa hybridaL. ‘Moneyway’. Plant Cell Tiss Organ Cult 37: 73–77 (1994).

    Google Scholar 

  31. van der Salm TPM, van der Toorn CJG, Hänisch ten Cate ChH, Dons JJM: Somatic embryogenesis and shoot regeneration from excised adventitious roots of the rootstock Rosa hybridaL. ‘Moneyway’. Plant Cell Rep 15: 522–526 (1996).

    Google Scholar 

  32. van der Salm TPM, van der Toorn CJG, Hänisch ten Cate ChH, van der Krieken WM, Dons JJM: The effects of exogenous auxin and ROLgenes on root formation in Rosa hybridaL.‘Moneyway’. Plant Growth Regul 19: 123–131 (1996).

    Google Scholar 

  33. van Wordragen MF, Honáe G, Dons JJM: Insect-resistant chrysanthemum calluses by introduction of a Bacillus thuringiensiscrystal protein gene. Transgenic Res 2: 170–180 (1993).

    PubMed  Google Scholar 

  34. Vilaine F, Charbonnier C, Casse-Delbart F: Further insight concerning the TL region of the Ri plasmid of Agrobacterium rhizogenesstrain A4: transfer of a 1.9 kb fragment is sufficient to induce transformed roots on tobacco leaf fragments. Mol Gen Genet 210: 111–115 (1987).

    Google Scholar 

  35. White FF, Taylor BH, Huffman GA, Gordon MP, Nester EW: Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bact 164: 33–44 (1985).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Salm, T.P., van der Toorn, C.J., Bouwer, R. et al. Production of ROL gene transformed plants of Rosa hybrida L. and characterization of their rooting ability. Molecular Breeding 3, 39–47 (1997). https://doi.org/10.1023/A:1009617704014

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009617704014

Navigation