Skip to main content
Log in

Atmospheric methane and nitrous oxide: sources, sinks and strategies for reducing agricultural emissions

  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

I discuss production, emission and oxidation of CH4 in rice paddy fields and N2O in fertilized soils. The quantity of CH4 emitted from rice paddy fields depends upon several important factors including soil factors, nutrient management, water regimes, cultivation practices and others. Important factors for N2O emitted from fertilized soils are soil water content, temperature, nitrate or ammonium concentration, available organic carbon for denitrification and pH. I provide an estimate of mitigation potential in agricultural systems based on this estimate and the management technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aulakh M, Rennie DA & Paul EA (1984) Gaseous nitrogen losses from soils under zero-till as compared with conventional-till management systems. J Environ Qual 13: 130–136

    Google Scholar 

  2. Batjes NH & Bridges BM (1992) World inventory of soil emission potentials. Proc Int Workshop WAG, 24–27, Aug. 1992, WISE-Report 2, Inter Soil Reference and Information Centre, Wageningen, the Netherlands

    Google Scholar 

  3. Blake DR & Rowland FS (1988) Continuing worldwide increase in tropospheric methane, 1978 to 1987. Science 239: 1129–1131

    CAS  Google Scholar 

  4. Born M, Dorr H & Levin I (1990) Methane consumption in aerated soils of the temperate zone. Tellus 42B: 2–8

    Google Scholar 

  5. Bouwman AF (1990) Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere In: Bouwman AF (ed) Soil and the Greenhouse Effect, pp 62–127. John Wiley and Sons, New York, USA

    Google Scholar 

  6. Bouwman AF & Sombroek WG (1990) In: Scharpenseel WH et al. (eds) Soils on Warmer Earth, pp 15–30. Elsevier, Amsterdam, the Netherlands

    Google Scholar 

  7. Bouwman AF, Hock KW & Oliver JGJ (1995) Uncertainties in the global source distribution of nitrous oxide. J Geophys Res 100: 2785–2800

    Article  CAS  Google Scholar 

  8. Bremner JM & Blackmer AM (1978) Nitrous oxide; Emissions from soils during nitrification of fertilizer nitrogen. Science 199: 295–296

    CAS  Google Scholar 

  9. Bremner JM & Blackmer AM (1979) Effects of acetylene and soil water content on emission of nitrous oxide from soils. Nature 280: 380–381

    Article  CAS  Google Scholar 

  10. Bronson KF, Mosier AR & Bishnoi SR (1992) Nitrous oxide emissions in irrigated corn as affected by encapsulated calcium carbide and nitrapyrin. Soil Sci Soc Am J 56: 161–165

    Article  CAS  Google Scholar 

  11. Bronson KF & Mosier AR (1993) Nitrous oxide emissions and methane consumption in wheat and corn-cropped systems. In: Harper LA, Mosier AR, Duxbury JM & Rolston DE (eds) Agriculture Ecosystem Effects on Trace Gases and Global Climate Change. ASA Special Publ. No 55, pp 133–144. Am Soc Agron, Madison, WI, USA

    Google Scholar 

  12. Bronson KF, Mosier AR, Bollich PK & Lindau CW (1994) Grain yield and 15N uptake of drill-seeded rice as affected by coated calcium carbide. Int Rice Res Notes 19, 22

    Google Scholar 

  13. CAST (1992) Preparing US Agriculture for Global Climate Change. Task Force Report No 119, Waggoner PE, Chair. Council for Agricultural Science and Technology, Ames, IA, USA. 96 p

    Google Scholar 

  14. Castro MS, Steudler PA, Melillo JM, Aber JD & Millham S (1993) Exchange of N2O and CH4 between the atmosphere and soils in spruce-fir forests in the northeastern United States. Biogeochem 18: 119–135

    Article  CAS  Google Scholar 

  15. Cicerone RJ, Shetter JD & Delwiche CC (1983) Seasonal variation of methane flux from a California rice paddy. J Geophys Res 88: 7203–7209

    Google Scholar 

  16. Cicerone RJ & Oremland RS (1988) Biogeochemical aspects of atmospheric methane. Global Biogeochem Cycles 2: 299–327

    CAS  Google Scholar 

  17. Cicerone RJ (1989) Analysis of sources and sinks of atmospheric nitrous oxide (N2O). J Geophys Res 94: 18265–18271

    Google Scholar 

  18. Clayton H, Arah JMR & Smith KA (1994) Measurement of nitrous oxide emissions from fertilized grassland using closed chambers. J Geophys Res 99: 16599–16607

    Article  CAS  Google Scholar 

  19. Conrad R (1989) Control of methane production in terrestrial ecosystems, In: Andreae MO and Schimel DS (eds) Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere, pp 39–58. John Wiley & Sons Ltd., Chichester

    Google Scholar 

  20. Conrad R & Rothfus F (1991) Methane oxidation in the soil surface layer of a flooded rice field and the effect of ammonium. Biol Fertil Soils 12: 28–32

    Article  CAS  Google Scholar 

  21. Craig H & Chou CC (1982) Methane; the record in polar ice core. Geophys Res Lett 9: 1221–1224

    CAS  Google Scholar 

  22. Crutzen PJ (1981) Atmospheric chemical processes of the oxides of nitrogen including nitrous oxide. In; Delwiche CC (ed) Denitrification, Nitrification and Atmospheric Nitrous Oxide, pp 17–44. Wiley, New York, USA

    Google Scholar 

  23. De Bont JAM, Lee KK & Bouldin DF (1978) Bacterial oxidation of methane in a rice paddy. Ecol Bull 26: 91–96

    Google Scholar 

  24. Dickison RE & Cicerone RJ (1986) Future global warming from atmospheric trace gases. Nature 319: 109–115

    Article  Google Scholar 

  25. Dulgokencky EJ, Steele LP, Lang PM & Masarie KA (1994) The growth rate and distribution of atmospheric methane. J Geophys Res 99: 17021–17043

    Article  Google Scholar 

  26. Duxbury JM & McConnaughey PK (1986) Effect of fertilizer source on denitrification and nitrous oxide emissions in a maize field. Soil Sci Soc Am J 50: 644–648

    Article  CAS  Google Scholar 

  27. Duxbury JM, Harper LA & Mosier AR (1993) Contributions of agroecosystems to global climate change. In: Harper LA, Mosier AR, Duxbury JM & Rolston DE (eds) Agriculture Ecosystem Effects on Trace Gases and Global Climate Change. ASA Special Publ No 55, pp 1–18. Am Soc Agron, Madison, WI, USA

    Google Scholar 

  28. Duxbury JM & Mosier AR (1993) Status and issues concerning agricultural emissions of greenhouse gases. In: Kaiser HM & Drennen TE (eds) Agricultural Dimensions of Global Climate Change, pp 229–258. St Louis Press, Delray Beach, FL, USA

    Google Scholar 

  29. Eichner MJ (1990) Nitrous oxide emissions from fertilized soils; Summary of available data. J Environ Qual 19: 272–280

    Article  Google Scholar 

  30. Erich MS, Bekerie A & Duxbury JM (1984) Activities of denitrifying enzymes in freshly sampled soils. Soil Sci 138: 25–32

    CAS  Google Scholar 

  31. FAO (1994) Production yearbook. FAO, Rome, Italy

    Google Scholar 

  32. Freney JF, Denmead OT, Watanabe I & Craswell ET (1981) Ammonia and nitrous oxide losses following applications of ammonium sulfate to flooded rice. Aust J Agric Res 32: 37–45

    Article  CAS  Google Scholar 

  33. Fung IJ, Lerner JJ, Matthews E, Prather M, Steele LP & Fraser PJ (1991) Three dimension model synthesis of the global methane cycle. J Geophys Res 96: 13033–13065

    CAS  Google Scholar 

  34. Holzapfel-Pschorn A, Conrad R & Seiler W (1985) Production, oxidation, and emission of methane in rice paddies. FEMS Microbiol Ecol 31: 343–351

    Article  CAS  Google Scholar 

  35. Hutsch BW, Webster CP & Powlson DS (1993) Long-term effects of nitrogen fertilization on methane oxidation in soil of the Broadbalk wheat experiment. Soil Biol Biochem 25: 1307–1315

    Article  Google Scholar 

  36. International Panel on Climate Change (IPCC) (1990) Climate Change, the IPCC Scientific Assessment. Houghton JT, Jenkins GT & Ephraums JT (eds) Cambridge University Press, Cambridge, UK

    Google Scholar 

  37. International Panel on Climate Change (IPCC) (1992) Climate Change 1992, the supplementary reports to the IPCC scientific assessment. Houghton JT, Callander BA & Varney SK (eds) Cambridge University Press, Cambridge, UK

    Google Scholar 

  38. International Panel on Climate Change (IPCC) (1996) Climate Change 1995, Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses. Watson RT, Zinyowera MC & Moss RH (eds), Cambridge University Press, Cambridge, UK

    Google Scholar 

  39. Inubushi K Umebayashi M & Wada H (1990) Methane emission from paddy fields. Trans 14th Int Congr Soil Sci 2: 249–254

    Google Scholar 

  40. Jenkins D (1963) Sewage treatment. In: Rainbow C & Rose AH (eds) pp 508–536. Academic Press, New York, USA

    Google Scholar 

  41. Keerthisinghe DJ, Freney JR & Mosier AR (1993) Effect of wax-coated calcium carbide and nitrapyrin on nitrogen loss and methane emission from dry-seeded flooded rice. Biol Fertil Soils 16: 71–75

    Article  Google Scholar 

  42. Keller GD, Kaplan WA & Wofsy SC (1986) Emissions of N2O, CH4 and CO2 from tropical forest soils. J Geophys Res 91: 11791–11802

    CAS  Google Scholar 

  43. Khalil MAK & Rasmussen RA (1990) Atmospheric methane; Recent global trends. Environ Sci Technol 24: 549–553

    Article  CAS  Google Scholar 

  44. Khalil MAK & Rasmussen RA (1993) Decreasing trend of methane; Unpredictability of future concentrations. Chemosphere 26: 803–814

    Article  CAS  Google Scholar 

  45. Khalil MAK (1993) Working Group Report; Methane Emissions from Rice Fields. In: van Amstel A (ed) Methane and Nitrous Oxide; Methods in national Emissions inventories and options for Control Proceedings. pp 239–244. Natl Inst Public Health and Environ Prot, Bilthoven, The Netherlands

    Google Scholar 

  46. Lin EH, Dong H & Li Y (1995) Methane emissions of China; Agricultural sources and mitigation options. In: Agricultural Sources and Mitigation Options, Proc Symp Non-CO2 Greenhouse Gases. Kluwer Academic Publishers, Dordrecht, the Netherlands (In press)

    Google Scholar 

  47. Lindau CW, Patrick Jr WH & DeLaune RD (1993) Factors affecting methane production in flooded ricesoils. In: Harper LA, Mosier AR, Duxbury JM & Rolston DE (eds) Agricultural Ecosystem Effects on Trace Gases and Global Climate Change. ASA Special Publ No 55, pp 157–165. Am Soc Agron, Madison, WI, USA

    Google Scholar 

  48. Magalhaes AMT, Chalk PM & Strong MW (1984) Effect of nitrapyrin on nitrous oxide emission from fallow soils fertilized with anhydrous ammonia. Fert Res 5: 411–421

    Article  CAS  Google Scholar 

  49. Megraw SR & Knowles R (1987) Methane production and consumtion in a cultivated humisol. Biol Fertil Soils 5: 56–60

    Article  CAS  Google Scholar 

  50. Minami K & Fukushi S (1984) Methods for measuring N2O flux from water surface and N2O dissolved in water from agricultural land. Soil Sci Plant Nutr 30: 495–501

    CAS  Google Scholar 

  51. Minami K & Yagi K (1988) Method for measuring methane flux from rice paddies. Jpn J Soil Sci Plant Nutr 59: 458–463 (In Japanese)

    CAS  Google Scholar 

  52. Minami K, Shibuya T, Ogawa Y & Fukushi S (1990) Effect of nitrification inhibitors on emission of nitrous oxide from soils. Trans 14th Int Congress Soil Sci 2: 267–272

    Google Scholar 

  53. Minami K, Goudriaan J, Lantinga EA & Kimura T (1993) Significance in emission and absorption of greenhouse gases. Proc 17th Int Grassland Congr, pp 1231–1238

  54. Minami K, Mosier A & Sass R (eds) (1994) CH4 and N2O; Global Emissions and Controls from Rice Fields and Other Agricultural and Industrial Sources. NIAES Series 2. Yokendo Publishers, Tokyo, Japan. 234 p

    Google Scholar 

  55. Minami K (1994a) Effect of nitrification inhibitors and slowrelease fertilizer on emission of nitrous oxide from fertilized soils. In: Minami K, Mosier A & Sass R (eds) CH4 and N2O; Global Emissions and Controls from Rice Fields and Other Agricultural and Industrial Sources. NIAES Series 2. Yokendo Publishers, Tokyo, Japan. 234 p

    Google Scholar 

  56. Minami K (1994b) Methane from rice production. Fert Res 37: 167–180

    Article  CAS  Google Scholar 

  57. Minami K (1995) The effect of nitrogen fertilizer use and other practices on methane emission from flooded rice. Fert Res 40: 71–84

    Article  CAS  Google Scholar 

  58. Mosier AR, Chapman SL & Freney JR (1989) Determination of dinitrogen emission and retention in floodwater and porewater of a lowland rice field fertilized with 15N-urea. Fert Res 19: 127–136

    Article  CAS  Google Scholar 

  59. Mosier A, Schimel D, Valentine D, Bronson K & Parton W (1991) Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands. Nature 350: 330–332

    Article  CAS  Google Scholar 

  60. Mosier AR & Bouwman AF (1993) Working group report; Nitrous oxide emissions from agricultural soils. In: Van Amstel AR (ed) Methane and Nitrous oxide; Methods in National Emission Inventories and Options for Control Proceedings, pp 343–346. Natl Inst Public Health and Environ Prot, Bilthoven, The Netherlands

    Google Scholar 

  61. Mosier AR, Bronson KF, Freney JR & Keerthisingle DG (1994) Use of nitrification inhibitors to reduce nitrous oxide emission from urea fertilized soils. In: Minami K, Mosier A & Sass R (eds) CH4 and N2O; Global Emissions and Controls from Rice Fields and Other Agricultural and Industrial Sources. NIAES Series 2, pp 197–207. Yokendo Publishers, Tokyo, Japan

    Google Scholar 

  62. Mosier AR, Duxbury JM, Freney JR, Heinemeyer O & Minami K (1995) Mitigating agricultural emission of nitrous oxide. Submitted to Climate Change

  63. Nouchi I, Mariko S & Aoki K (1990) Mechanisms of methane transport from the rhizosphere to the atmosphere through rice plant. Plant Physiol 94: 59–66

    CAS  Google Scholar 

  64. Ojima DS, Valentine DW, Mosier AR, Parton WJ & Schimel DS (1993) Effect of land use change on methane oxidation in temperate forest and grassland soils. Chemosphere 26: 675–685

    Article  CAS  Google Scholar 

  65. Parashar DC et al. (1994) Methane budget from Indian paddy fields. In: Minami K, Mosier A & Sass R (eds) CH4 and N2O; Global Emissions and Controls from Rice Fields and Other Agricultural and Industrial Sources. NIAES Series 2, pp 27–39. Yokendo Publishers, Tokyo, Japan

    Google Scholar 

  66. Patrick WH Jr (1981) The role of inorganic redox systems in controlling reduction in paddy soils. In: Proc Symp Paddy Soil, pp 107–117. Science Press, Beijing, Springer Verlag, Berlin, Germany

    Google Scholar 

  67. Ramanathan V, Cicerone RJ, Singh HB & Kiehl JT (1985) Trace gas trends and their potential role in climate change. J Geophys Res 90(D): 5547–5566

    CAS  Google Scholar 

  68. Rasmussen RA & Khalil MAK (1981) Increase in the concentration of atmospheric methane. Atmos Environ 15: 883–886

    Article  CAS  Google Scholar 

  69. Rasmussen RA & Khalil MAK (1984) Atmospheric methane in the recent and ancient atmospheres; concentrations, trends, and interhemispheric gradient. J Geophys Res 89(D): 11599–11605

    CAS  Google Scholar 

  70. Reeburgh WS, Whalen SC & Alpen MJ (1993) The role of methylotrophy in the global methane budget. Microbial Growth on C1 Compounds 1–14

  71. Rudolph J (1994) Anomalous methane. Nature 368: 19–20

    Article  Google Scholar 

  72. Ryden JC (1981) N2O exchange between a grassland soil and the atmosphere. Nature 292: 235–237

    Article  CAS  Google Scholar 

  73. Ryden JC (1983) Denitrification loss from a grassland soil in the field receiving different rates of nitrogen as ammonium nitrate. J Soil Sci 198: 355–365

    Article  Google Scholar 

  74. Sass RL, Fisher FM, Harcombe PA & Turner FT (1990) Methane production and emission in agriculturl wetlands. Global Biogeochem Cycles 4: 47–68

    CAS  Google Scholar 

  75. Sass RL, Fisher FM, Wang YB, Turner FT & Jund MF (1992) Methane emission from rice field; The effect of floodwater management. Global Biogeochem Cycles 6: 249–262

    CAS  Google Scholar 

  76. Sass RL (1994) Short summary chapter for methane. In: Minami K, Mosier A & Sass R (eds) CH4 and N2O; Global Emissions and Controls from Rice Fields and Other Agricultural and Industrial Sources. NIAES Series 2, pp 65–77. Yokendo Publishers, Tokyo, Japan

    Google Scholar 

  77. Sauerbeck D (1994) Nitrogen fertilization and nitrogen balance-environmentai consequences and limitations. In: Mohr HU & Muents K (eds) The terrestrial Nitrogen Cycle as Influenced by Man. Nova Acta Leopoldina (Halle) 70: 441–447

  78. Schutz H, Holzapfel-Pschorn A, Conrad R, Rennenberg H & Seiler W (1989) A 3-year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice paddy. J Geophys Res 94: 16405–16416

    Google Scholar 

  79. Seiler W, Holzapfel-Pschorn A, Conrad R & Scharffe D (1984a) Methane emissions from rice paddies. J Atmos Chem 1: 241–268

    Article  CAS  Google Scholar 

  80. Seiler W, Conrad R & Scharffe D (1984b) Field studies of methane emission from termite nests into the atmosphere and measurements of methane uptake by tropical soils. J Atmos Chem 1: 171–186

    Article  CAS  Google Scholar 

  81. Seiler W & Conrad R (1987) Contribution of tropical ecosystems to the global budgets of trace gases, especially CH4, H2, CO and N2O. In: Dickinson RE (ed) Geophysiology of Amazonia. Vegetation and Climate Interactions, pp 133–160. Wiley and Sons, New York, USA

    Google Scholar 

  82. Simpson JR, Freney JR, Wetselaar R, Muirhead WA, Leuning R & Denmead OT (1984) Transformations and losses of urea nitrogen after application to flooded rice. Aust J Agric Res 35: 189–200

    Article  CAS  Google Scholar 

  83. Sitaula B, Bakken LR & Abrahamsen G (1995) CH4 uptake by temperate forest soil: Effect of N input and soil acidification. Soil Biol Biochem 27: 871–880

    Article  CAS  Google Scholar 

  84. Smith KA (1990) Greenhouse gas fluxes between land surfaces and the atmosphere. Prog Phys Geography 14: 349–372

    Article  Google Scholar 

  85. Steele LP, Dlugokencky EJ, Lang PM, Tans PP, Martin RC & Masarie KA (1992) Slowing down of the global accumulation of atmospheric methane during the 1980s. Nature 358: 313–316

    Article  CAS  Google Scholar 

  86. Steudler PA, Bowden RD, Melillo JM & Aber JD (1989) Influence of nitrogen fertilisation on methane uptake in temperate forest soils. Nature 341: 314–316

    Article  Google Scholar 

  87. Striegl RG, McConnaughey TG, Thorstenson DC, Weeks EP & Woodward JC (1992) Consumption of atmospheric methane by desert soils. Nature 357: 145–147

    Article  CAS  Google Scholar 

  88. Takai Y, Koyama T & Kamura T (1956) Microbial metabolism in reduction process of paddy soils (Part 1). Soil Plant Food 2: 63–66

    CAS  Google Scholar 

  89. Takai Y (1970) The mechanism of methane fermentation in flooded paddy soil. Soil Sci Plant Nutr 16: 238–244

    CAS  Google Scholar 

  90. Takai Y (1980) Microbial study on the behavior of the paddy soils. Fert Sci 3: 17–55 (In Japanese)

    Google Scholar 

  91. Thurlow M, Kanda K, Tsuruta H & Minami K (1995) Methane uptake by unflooded soils, The influence of soil temperature and atmospheric methane concentration. Soil Sci Plant Nutr 41: 371–375

    CAS  Google Scholar 

  92. Wang MX, Dai A, Shangguan X, Ren L, Shen R, Schuts H, Seiler W, Rasmussen RA & Khalil MAK (1994) Source of methane in China. In: Minami K, Mosier A & Sass R (eds) CH4 and N2O; Global Emissions and Controls from Rice Fields and Other Agricultural and Industrial Sources. NIAES Series 2, pp 9–26. Yokendo Publishers, Tokyo, Japan

    Google Scholar 

  93. Wang WC, Yung YL, Lacis AA, Mo JE & Hansen JE (1976) Greenhouse effects due to man-made perturbations of trace gases. Science 194: 685–690

    CAS  Google Scholar 

  94. Whalen SC & Reeburgh WS (1988) A methane flux time series for tundra environments. Global Biogeochem Cycles 2: 399–409

    Article  CAS  Google Scholar 

  95. Yagi K, Minami K & Ogawa Y (1990) Effects of water percolation on methane emission from paddy fields. NIAES Res Rep Div Environ Planning 6: 105–112

    Google Scholar 

  96. Yagi K, Kumagai H, Tsuruta H & Minami K (1995) Emission, production, and oxidation of methane in a Japanese rice paddy field. In: Lal R, Kimble J, Levin E & Stewart BA (eds). Adv Soil Sci, In Soils and Global Change, pp 231–243. Lewis Publishers

  97. Yamane I & Sato K (1961) Effect of temperature on the formation of gases and ammonium nitrogen in the waterlogged soils. Sci Rep Res Inst Tohoku Univ D(Agr) 12: 31–46

    CAS  Google Scholar 

  98. Yamane I & Sato K (1963) Decomposition of plant constituents and gas formation in flooded soil. Soil Sci Plant Nutr 9: 28–31

    CAS  Google Scholar 

  99. Yamane I & Sato K (1964) Decomposition of glucose and gas formtaion in flooded soil. Soil Sci Plant Nutr 10: 127–133

    CAS  Google Scholar 

  100. Yavitt JB, Downey DM, Lancaster E & Lang DE (1990) Methane consumption in decomposition Sphagnum-derived peat. Soil Biol Biochem 22: 441–447

    Article  CAS  Google Scholar 

  101. Yoshida T (1978) Microbial metabolism in rice soils. In: Soils and Rice, pp 445–463. Int. Rice Res Inst, Manila, Philippines.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minami, K. Atmospheric methane and nitrous oxide: sources, sinks and strategies for reducing agricultural emissions. Nutrient Cycling in Agroecosystems 49, 203–211 (1997). https://doi.org/10.1023/A:1009730618454

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009730618454

Navigation