Skip to main content
Log in

The influence of hybridization on epidermal properties of birch species and the consequences for palaeoclimatic interpretations

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

The Fennoscandian birch population primarily consists of Betula nana, B. pendula and B. pubescens ssp. czerepanovii, the Mountain birch. Frequent hybridization between the Mountain birch and B. nana generates a wide range of genotypic and phenotypic plasticity in the subarctic birch zone of Fennoscandia. Phases of subarctic conditions prevailed during the Late Glacial in large parts of NW Europe, and palynological as well as macrofossil analysis provide some evidence for the occurrence of birch hybrids during these intervals. Leaves from genetically controlled specimens of Betula pendula, B. pubescens ssp. czerepanovii, B. nana and the hybrids B. pubescens ssp. czerepanovii × nana and B. nana × pubescens ssp. czerepanovii are investigated for their specific characteristics of the epidermis morphology. Frequency and size of epidermal cells and stomata reveal a close affinity of both hybrids to B. nana and allow a differentiation of the intermediate forms between B. nana and the Mountain birch. With respect to palaeoatmospheric CO2 reconstructions based on stomatal index, epidermal analysis shows that a possible occurrence of hybrids in fossil leaf assemblages has no profound consequences for combined species records. However, the significant differences observed in B. nana demand the separation of this species. A comparison of the cuticle properties of B. pendula and B. pubescens from Finnish Lapland and leaf material from The Netherlands reveals a divergence of the stomatal index that may be due to differences in day light length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, M. D. 1992. Betula pendula Roth (B. verrucosa Ehrh.) and B. pubescens Ehrh. Journal of Ecology 80: 837–870.

    Google Scholar 

  • Beerling, D. J. 1992. Changes in the stomatal density of B. nana leaves in response to increase in atmospheric carbon diaoxide concentration since the Late-Glacial. Special Papers in Palaeontology 49:181–187.

    Google Scholar 

  • Brown, I. R. & AI-Dawoody, D. 1979. Observations on meiosis in three cytophytes of Betula alba L. New Phytologist 83: 801–811.

    Google Scholar 

  • Chia, A. J. & Brun, W. A. 1978. Stomatal size and frequency in soyabeans. Crop Sciences 15: 309–313.

    Google Scholar 

  • Elamo, P., Helander, M. L., Saloniemi, I. & Neuvonen, S. 1999. Birch family and enviromnental conditions affect endophytic fungi in leaves. Oecologia (in press).

  • Hå bjø rg, A. 1972. Effects of photoperiod and temperature on growth and development of three latitudinal and three altitudinal populations of Betula pubescens Ehrh. Institute of Dendrology and Nursery Management, Agricultural University of Norway, Report No. 44.

  • Hagman, M. 1971. On self-and cross-incompatibility shown by Betula verrucosa Ehrh. and B. pubescens Ehrh. Communicationes Instituti Forestalis Fenniae 73(6): 1–25.

    Google Scholar 

  • Helms, A. & Jø rgenson, C. A. 1925. Maglemoser i grib skov. Undersø gelser over vegetationen paa en nordsjaellandsk mose.VIII. Birkene paa Maglemoser. Botanisk Tidsskrift 39: 57–133.

    Google Scholar 

  • Kallio, P., Niemi, S., Sulkinoja, M. & Valanne, T. 1983. The Fennoscandian birch and its evolution in the marginal forest zone. In: Morriset, P. and Payette, S. (eds), Tree-line ecology. Proceedings of the Northern Québec Tree-line conference. Collection Nordicana 47. Laval University, Quebec, Canada.

  • Kujala, V. 1946. Koivututkimuksia. Some recent research data on birches. Communicationes Instituti Forestalis Fenniae 34(1): 1–36.

    Google Scholar 

  • Kürschner, W. M. 1996. Leaf stomata as biosensors of palaeoatmospheric CO2 levels. PhD Thesis, Laboratory of Palaeobotany and Palynology, Utrecht University, LPP Contributions Series 5: 1–153.

    Google Scholar 

  • Kürschner, W. M. 1997. The anatomical diversity of recent and fossil leaves of the durmast oak (Quercus petraea Lieblein /Quercus pseudocastanea Goeppert): implications for their use as biosensors of palaeoatmospheric CO2 levels. Review of Palaeobotany and Palynology 96: 1–30.

    Google Scholar 

  • Kürschner, W. M., Wagner, F., Visscher, E. H. & Visscher, H. 1997. Predicting the response of leaf stomatal frequency to a future CO2-enriched atmosphere: constraints from historical observations. Geologische Rundschau 86: 512–517.

    Google Scholar 

  • Mäkelä, E. M. 1996. Size distinctions between Betula pollen types-A review. Grana 35: 248–356.

    Google Scholar 

  • Mäkelä, E. M. 1998. The Holocene history of Betula at lake Ilompolo, Inari Lapland, northeastern Finland. Holocene 8(1): 55–67.

    Google Scholar 

  • Masterson, J. 1994. Stomatal size in fossil plants: Evidence for polyploidy in majority of angiosperms. Science 264: 421–424.

    Google Scholar 

  • Metcalfe, C. R. & Chalk, L. 1979. Anatomy of the Dicotyledons (2. Edition) Vol. I: Systematic anatomy of the leaf and stem. Oxford University Press, Oxford.

    Google Scholar 

  • Mishra, M. K., Prokash, N. S. & Sreenivasan, M. S. 1991. Relationship of stomatal length and frequency to ploidy level in Coffea L. Journal of Coffee Research 21: 32–41.

    Google Scholar 

  • Mishra, M. K. 1997. Stomatal characteristics at different ploidy levels in Coffea L. Annals of Botany 80: 689–692.

    Google Scholar 

  • Peñ uelas, J. & Matamala, R. 1990. Changes in N and S leaf content, stomatal density and specific leaf area of 14 plant species during the last three centuries of CO2 increase. Journal of Experimental Botany 41: 1119–1124.

    Google Scholar 

  • Salisbury, E. J. 1927. On the causes and ecological significance of stomatal frequency, with special reference to the woodland flora. Royal Society (London), Philosophical Transactions B. 216: 1–65.

    Google Scholar 

  • Speckmann, G., Post Jr, J. J. & Dijkstra, H. 1965. The length of stomata as an indicator for polyploidy in rye grasses. Euphytica 14: 225–230.

    Google Scholar 

  • Schümann, B. 1959. Ñber den Einflußder Hydratur und des Lichtes auf die Ausbildung der Stomata-Initialien. Flora 147: 471–520.

    Google Scholar 

  • Stern, K. 1963. Ñber einige Kreuzungsversuche zur Frage des Vorkommens von Arthybriden Betula verrucosa x B. pubescens. Deutsche Baumschule 15(1): 1–10.

    Google Scholar 

  • Sulkinoja, M. 1990. Hybridization, introgression and taxonomy of the Mountain birch in SW Greenland compared with related results from Iceland and Finnish Lapland. Meddeleser om Grø nland, Bioscience 33: 21–29.

    Google Scholar 

  • Taiz, L. & Zeiger, E. 1998. Plant Physiology. The Benjamin/ Cummings Publishing Company, Redwood City, CA.

    Google Scholar 

  • Tuomisto, H. & Neuvonen, S. 1993. How to quantify differences in epicuticular wax morphology of Picea abies (L.) Karst. needles. The New Phytologist 123: 787–799.

    Google Scholar 

  • Vaarama, A. & Valanne, T. 1973. On the taxonomy, biology and origin of Betula tortuosa Lebed. Reports from the Kevo Subarctic Research Station 10: 70–94.

    Google Scholar 

  • Van der Burgh, J., Visscher, H., Dilcher, D. & Kürschner, W. M. 1993. Paleoatmospheric signatures in Neogene fossil leaves. Science 260: 1788–1790.

    Google Scholar 

  • Van Geel, B., Coope, G. R., Van der Hammen, T. 1989. Palaeoecology and stratigraphy of the lateglacial type section at Usselo (The Netherlands). Review of Palaeobotany and Palynology 60: 25–129.

    Google Scholar 

  • Wagner, F., Below, R., De Klerk, P., Dilcher, D. L., Joosten, H. Kürschner, W. M. & Visscher, H. 1996. A natural experiment on plant acclimation: Lifetime stomatal frequency response of an individual tree to annual atmospheric CO2 increase. Proceedings of the National Academy of Sciences USA 93: 11705–11708.

    Google Scholar 

  • Wagner, F. 1998. The influence of environment on the stomatal frequency in birch. PhD Thesis, Laboratory of Palaeobotany and Palynology, Utrecht University, LPP Contributions Series 9: 1-102.

    Google Scholar 

  • Wagner, F., Bohncke, S. J. P., Dilcher, D. L., Kürschner, W. M., van Geel, B. & Visscher, H. 1999. Century-scale shifts in early Holocene atmospheric CO2 concentrations. Science 284: 1971–1973.

    Google Scholar 

  • Watson, R. W. 1942. The effect of cuticular hardening on the form of epidermal cells. The New Phytologist 41: 223–229.

    Google Scholar 

  • Woodward, F. I. 1987. Stomatal numbers are sensitive to increases in CO2 concentration from pre-industrial levels. Nature 327: 617–618.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, F., Neuvonen, S., Kürschner, W.M. et al. The influence of hybridization on epidermal properties of birch species and the consequences for palaeoclimatic interpretations. Plant Ecology 148, 61–69 (2000). https://doi.org/10.1023/A:1009801614786

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009801614786

Navigation