Skip to main content
Log in

Quadratic Binary Programming and Dynamical System Approach to Determine the Predictability of Epileptic Seizures

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

Epilepsy is one of the most common disorders of the nervous system. The progressive entrainment between an epileptogenic focus and normal brain areas results to transitions of the brain from chaotic to less chaotic spatiotemporal states, the epileptic seizures. The entrainment between two brain sites can be quantified by the T-index from the measures of chaos (e.g., Lyapunov exponents) of the electrical activity (EEG) of the brain. By applying the optimization theory, in particular quadratic zero-one programming, we were able to select the most entrained brain sites 10 minutes before seizures and subsequently follow their entrainment over 2 hours before seizures. In five patients with 3–24 seizures, we found that over 90% of the seizures are predictable by the optimal selection of electrode sites. This procedure, which is applied to epilepsy research for the first time, shows the possibility of prediction of epileptic seizures well in advance (19.8 to 42.9 minutes) of their occurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • H.D.I. Abarbanel, Analysis of Observed Chaotic Data, Springer-Verlag: New York, 1996.

    Google Scholar 

  • B.W. Abou-Khalil, G.J. Seigel, J.C. Sackellares, S. Gilman, R. Hichwa, and R. Marshall, “Positron emission tomograghy studies of cerebral glucose metabolism in patients with chronic partial epilepsy,” Ann. Neurol., vol. 22, pp. 480-486, 1987.

    Google Scholar 

  • G.G. Athanasiou, C.P. Bachas, and W.F. Wolf, “Invariant geometry of spin-glass states,” Phy.Rev.B, vol. 35, pp. 1965-1968, 1987.

    Google Scholar 

  • F. Barahona, “On the computational complexity of spin glass models,” J. Phys. A: Math. Gen., vol. 15, pp. 3241-3253, 1982a.

    Google Scholar 

  • F. Barahona, “On the exact ground states of three-dimensional ising spin glasses,” J. Phys. A: Math. Gen., vol. 15, pp. L611-L615, 1982b.

    Google Scholar 

  • H. Berger, “Uber das elektroenkephalogramm des menchen,” Arch. Psychiatr. Nervenkr., vol. 87, pp. 527-570, 1929.

    Google Scholar 

  • D.E. Burdette, Sakuraisy, T.R. Henry, D.A. Ross, P.B. Pennell, K.A. Frey, J.C. Sackellares, and R. Albin, “Temporal lobe central benzodiazepine binding in unilateral mesial temporal lobe epilepsy,” Neurology, vol. 45, pp. 934-941, 1995.

    Google Scholar 

  • M. Casdagli, L.D. Iasemidis, R.L. Gilman, S.N. Roper, R.S. Savit, and J.C. Sackellares, “Nonlinearity in invasive EEG recordings from patients with temporal lobe epilepsy,” Electroenceph. Clin. Neurophysiol., vol. 102, pp. 98-105, 1997.

    Google Scholar 

  • M. Casdagli, L.D. Iasemidis, J.C. Sackellares, S.N. Roper, R.L. Gilman, and R.S. Savit, “Characterizing nonlin-earity in invasive EEG recordings from temporal lobe epilepsy,” Physica D, vol. 99, pp. 381-399, 1996.

    Google Scholar 

  • G. Casella and R.L. Berger, Statistical Inference, Duxbury Press: Belmont, CA, 1990.

    Google Scholar 

  • R. Caton, “The electric currents of the brain,” BMJ, vol. 2, p. 278, 1875.

    Google Scholar 

  • J.P. Eckmann, S.O. Kamphorst, D. Ruelle, and S. Ciliberto, “Lyapuunov exponents from time series,” Phys. Rev. A, vol. 34, pp. 4971-4972, 1986.

    Google Scholar 

  • C.E. Elger and K. Lehnertz, “Seizure prediction by non-linear time series analysis of brain electrical activity,” Europ. J. Neurosci., vol. 10, pp. 786-789, 1998.

    Google Scholar 

  • T. Elbert, W.J. Ray, J. Kowalik, J.E. Skinner, K.E. Graf, and N. Birbaumer, “Chaos and physiology: Deterministic chaos in excitable cell assemblies,” Physiol. Rev., vol. 74, pp. 1-47, 1994.

    Google Scholar 

  • J. Engel Jr., D.E. Kuhl, M.E. Phelps, and J.C. Mazziota, “Interictal cerebral glucose metabolism in partial epilepsy and its relation to EEG changes,” Ann. Neurol., vol. 12, pp. 510-517, 1982.

    Google Scholar 

  • M.A. Falconer, E.A. Serefetinides, and J.A.N. Corsellis, “Aetiology and pathogenesis of temporal lobe epilepsy,” Arch. Neurol., vol. 19, pp. 233-240, 1964.

    Google Scholar 

  • M. Feucht, U. Moller, H. Witte, F. Benninger, S. Asenbaum, D. Prayer, and M.H. Friedrich, “Application of correlation dimension and pointwise dimension for non-linear topographical analysis of focal onset seizures,” Med. Biol. Eng. Comp., vol. 37, pp. 208-217, 1999.

    Google Scholar 

  • A.M. Fraser and H.L. Swinney, “Independent coordinates for strange attractors from mutual information,” Phys. Rev. A, vol. 33, pp. 1134-1140, 1986.

    Google Scholar 

  • P. Gloor, Hans Berger on the Electroencephalogram of Man, Elsevier: Amsterdam, 1969.

    Google Scholar 

  • P. Grassberger and I. Procaccia, “Measuring the strangeness of strange attractors,” Physica D, vol. 9, pp. 189-208, 1983a.

    Google Scholar 

  • P. Grassberger and I. Procaccia, “Characterization of strange attractors,” Phys. Rev. Lett., vol. 50, pp. 346-349, 1983b.

    Google Scholar 

  • P. Grassberger, T. Schreiber, and C. Schaffrath, “Nonlinear time sequence analysis,” Int. J. Bifurc. Chaos, vol. 1, pp. 521-547, 1991.

    Google Scholar 

  • A.V. Holden, Chaos-Nonlinear Science: Theory and Applications, University Press: Manchester, 1986.

    Google Scholar 

  • H. Horst, P.M. Pardalos, and V. Thoai, Introduction to Global Optimization, Series on Nonconvex Optimization and its Applications, 3, Kluwer Academic Publishers: Dordrecht, 1995.

    Google Scholar 

  • L.D. Iasemidis, H.P. Zaveri, J.C. Sackellares, and W.J. Williams, “Linear and nonlinear modeling of ECoG in temporal lobe epilepsy,” 25th Annual Rocky Mountain Bioengineering Symposium, vol. 24, pp. 187-193, 1988.

    Google Scholar 

  • L.D. Iasemidis, J.C. Sackellares, H.P. Zaveri, and W.J. Williams, “Phase space topography of the electrocorticogram and the Lyapunov exponent in partial seizures,” Brain Topogr., vol. 2, pp. 187-201, 1990.

    Google Scholar 

  • L.D. Iasemidis, “On the dynamics of the human brain in temporal lobe epilepsy,” PhD Thesis, University of Michigan, Ann Arbor, 1991.

    Google Scholar 

  • L.D. Iasemidis and J.C. Sackellares, “The temporal evolution of the largest Lyapunov exponent on the human epileptic cortex,” in Measuring Chaos in the Human Brain, D.W. Duke and W.S. Pritchard (Eds.), World Scientific: Singapore, 1991.

    Google Scholar 

  • L.D. Iasemidis, J.C. Sackellares, and R.S. Savit, “Quantification of hidden time dependencies in the EEG within the framework of nonlinear dynamics,” in Nonlinear Dynamical Analysis of the EEg, B.H. Jansen and M.E. Brandt (Eds.), World Scientific: Singapore, 1993.

    Google Scholar 

  • L.D. Iasemidis, L.D. Olson, J.C. Sackellares, and R. Savit, “Time dependencies in the occurrences of epileptic seizures: A nonlinear approach,” Epilepsy Research, vol. 17, pp. 81-94, 1994.

    Google Scholar 

  • L.D. Iasemidis, J.C. Principe, and J.C. Sackellares, “Spatiotemporal dynamics of human epileptic seizures,” in 3 rd Experimental Chaos Conference, R.G. Harrison, W. Lu, W. Ditto, L. Pecora, M. Spano, and S. Vohra (Eds.), World Scientific: Singapore, 1996.

    Google Scholar 

  • L.D. Iasemidis and J.C. Sackellares, “Chaos theory and epilepsy,” The Neuroscientist, vol. 2, pp. 118-126, 1996.

    Google Scholar 

  • L.D. Iasemidis, J.C. Principe, J.M. Czaplewski, R.L. Gilman, S.N. Roper, and J.C. Sackellares, “Spatiotemporal transition to epileptic seizures: A nonlinear dynamical analysis of scalp and intracranial EEG recordings,” in Spatiotemporal Models in Biological and Artifical Systems, F. Lopes da Silva, J.C. Principe, and L.B. Almeida (Eds.), IOS Press: Amsterdam, 1997.

    Google Scholar 

  • L.D. Iasemidis, J.C. Principe, and J.C. Sackellares, “Measurement and quantification of spatiotemporal dynamics of human epileptic seizures,” in Nonlinear Biomedical Signal Processing, 2, M. Akay (Ed.), IEEE Press, pp. 294-298, 2000.

  • L.D. Iasemidis, D.S. Shidu, P. Pardalos, and J.C. Sackellares, “Transition to epileptic seizures-an optimization approach into its dynamics,” in Discrete Problems with Medical Applications, D.Z. Du, P.M. Pardalos, and J. Wang, DIMACS Series American Mathematical Society Publishing Co., vol. 55, pp. 55-74, 2000.

  • B.H. Jansen, “Is it and so what? A critical review of EEG-chaos,” in Measuring Chaos in the Human Brain, D.W. Duke and W.S. Pritchard (Eds.), World Scientific: Singapore, 1991.

    Google Scholar 

  • A.N. Kolmogorov, “The general theory of dynamical systems and classical mechanics,” in Foundations of Mechanics, R. Abraham and J.E. Marsden (Eds.), 1954.

  • E.J. Kostelich, “Problems in estimating dynamics from data,” Physica D, vol. 58, pp. 138-152, 1992.

    Google Scholar 

  • K. Lehnertz and C.E. Elger, “Spatio-temporal dynamics of the primary epileptogenic area in temporal lobe epilepsy characterized by neuronal complexity loss,” Electroenceph. Clin. Neurophysiol., vol. 95, pp. 108-117, 1995.

    Google Scholar 

  • K. Lehnertz and C.E. Elger, “Can epileptic seizures be predicted? Evidence from nonlinear time series analysis of brain electrical activity,” Phys. Rev. Lett., vol. 80, pp. 5019-5022, 1998.

    Google Scholar 

  • M. Le Van Quyen, J. Martinerie, C. Adam, and F.J. Varela, “Nonlinear spatio-temporal interdependences of interictal intracranial EEG recordings from patients with temporal lobe epilepsy: Localizing of epileptogenic foci,” Physica D, vol. 127, pp. 250-266, 1999a.

    Google Scholar 

  • M. Le Van Quyen, J. Martinerie, M. Baulac, and F. Varela, “Anticipating epileptic seizures in real time by a non-linear analysis of similarity between EEG recordings,” NeuroReport, vol. 10, pp. 2149-2155, 1999b.

    Google Scholar 

  • F. Lopes da Silva, “EEG analysis: Theory and practice; computer-assisted EEG diagnosis: Pattern recognition tech-niques,” in Electroencephalography: Basic Principles, Clinical Applications and Related Field, E. Niedermeyer and F. Lopes da Silva (Eds.), Urban and Schwarzenberg: Baltimore, 1987.

    Google Scholar 

  • J. Martinerie, C. Adam, M. Le Van Quyen, M. Baulac, S. Clemenceau, B. Renault, and F.J. Varela, “Epileptic seizures can be anticipated by non-linear analysis,” Nature Medicine, vol. 4, pp. 1173-1176, 1998.

    Google Scholar 

  • J.H. Margerison and J.A.N. Corsellis, “Epilepsy and the temporal lobes,” Brain, vol. 89, pp. 499-530, 1966.

    Google Scholar 

  • G. Mayer-Kress, Dimension and Entropies in Chaotic Systems, Springer-Verlag: Berlin, 1986.

    Google Scholar 

  • J.W. McDonald, E.A. Garofalo, T. Hood, J.C. Sackellares, S. Gilman, P.E. McKeever, J.C. Troncaso, and M.V. John-ston, “Altered excitatory and inhibitory aminoacid receptor binding in hippocampus of patients with temporal lobe epilepsy,” Annals of Neurology, vol. 29, pp. 529-541, 1991.

    Google Scholar 

  • M. Mezard, G. Parisi, and M.A. Virasoro, Spin Glass Theory and Beyond, World Scientific: Singapore, pp. 112-133, 1987.

    Google Scholar 

  • J.J. Moré and S.J. Wright, Optimization Software Guide, SIAM, Philadelphia, 1994.

    Google Scholar 

  • E. Niedermeyer, “Depth electroencephalography,” in Electroencephalography: Basic Principles, Clinical Appli-cations and Related Fields, E. Niedermeyer and F. Lopes da Silva (Eds.), Urban and Schwarzenberg: Baltimore, 1987.

    Google Scholar 

  • A. Oseledec, “A multiplicative ergodic theorum-Lyapunov characteristic numbers for dynamical systems (English translation),” IEEE Int. Conf. ASSP, vol. 19, pp. 179-210, 1968.

    Google Scholar 

  • N.H. Packard, J.P. Crutchfield, J.D. Farmer, and R.S. Shaw, “Geometry from time series,” Phys. Rev. Lett., vol. 45, pp. 712-716, 1980.

    Google Scholar 

  • M. Palus, V. Albrecht, and I. Dvorak, “Information theoretic test for nonlinearity in time series,” Phys. Lett. A, vol. 175, pp. 203-209, 1993.

    Google Scholar 

  • P.M. Pardalos and G. Rodgers, “Parallel branch and bound algorithms for unconstrained quadratic zero-one programming,” in Impact of Recent Computer Advances on Operations Research, R. Sharda et al. (Eds.), North-Holland, 1989.

  • P.M. Pardalos and G. Rodgers, “Computational aspects of a branch and bound algorithm for quadratic zero-one programming,” Computing, vol. 45, pp. 131-144, 1990.

    Google Scholar 

  • J. Pesin, “Characteristic Lyapunov exponents and smooth ergodic theory,” Russian Math. Survey, vol. 4, pp. 55-114, 1977.

    Google Scholar 

  • A. Renyi, Probability Theory, Elsevier: Amsterdam, 1970.

    Google Scholar 

  • J.C. Sackellares, L.D. Iasemidis, R.L. Gilman, and S.N. Roper, “Epilepsy-When chaos fails,” in Chaos in the Brain? P. Grassberger, C.E. Elger, and K. Lehnertz (Eds.), World Scientific: Singapore, pp. 112-133, 2000.

    Google Scholar 

  • J.C. Sackellares, L.D. Iasemidis, H.P. Zaveri, and W.J. Williams, “Measurement of chaos to localize seizure onset,” Epilepsia, vol. 30, p. 663, 1989a.

    Google Scholar 

  • J.C. Sackellares, L.D. Iasemidis, H.P. Zaveri, W.J. Williams, and T.W. Hood, “Inference on the chaotic behavior of the epileptogenic focus,” Epilepsia, vol. 29, p. 682, 1989b.

    Google Scholar 

  • J.C. Sackellares, G.J. Siegel, B.W. Abou-Khalil, T.W. Hood, S. Gilman, P. McKeever, R.D. Hichwa, and G.D. Hutchins, “Differences between lateral and mesial temporal metabolism interictally in epilepsy of mesial temporal origin,” Neurology, vol. 40, p. 1420-1426, 1990.

    Google Scholar 

  • F. Takens, “Detecting strange attractors in turbulence,” in Dynamical Systems and Turbulence, Lecture Notes in Mathematics, D.A. Rand and L.S. Young (Eds.), Springer-Verlag: Heidelburg, 1981.

    Google Scholar 

  • M.J. Van der Heyden, D.N. Velis, B.P.T. Hoekstra, J.P.M. Pijn, W. Van Emde Boas, C.W.M. Van Veelen, P.C. Van Rijen, F.H. Lopes da Silva, and J. DeGoede, “Non-linear analysis of intracranial human EEG in temporal lobe epilepsy,” Clinical Neurophysiology, vol. 110, pp. 1726-1740, 1999.

    Google Scholar 

  • J.A. Vastano and E.J. Kostelich, “Comparison of algorithms for determining Lyapunov exponents from experimental data,” in Dimensions and Entropies in Chaotic Systems: Quantification of Complex Behavior, G. Mayer-Kress (Ed.), Springer-Verlag: Berlin, 1986.

    Google Scholar 

  • P. Walters, An Introduction to Ergodic Theory, Springer-Verlag: Berlin, 1982.

    Google Scholar 

  • Weisberg, Applied Linear Regression, Wiley: New York, 1990.

    Google Scholar 

  • A. Wolf, J.B. Swift, H.L. Swinney, and J.A. Vastano, “Determining Lyapunov exponents from a time series,” Physica D, vol. 16, pp. 285-317, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iasemidis, L., Pardalos, P., Sackellares, J. et al. Quadratic Binary Programming and Dynamical System Approach to Determine the Predictability of Epileptic Seizures. Journal of Combinatorial Optimization 5, 9–26 (2001). https://doi.org/10.1023/A:1009877331765

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009877331765

Navigation