Skip to main content
Log in

Generic Splitting Fields of Central Simple Algebras: Galois Cohomology and Nonexcellence

  • Published:
Algebras and Representation Theory Aims and scope Submit manuscript

Abstract

A field extension L / F is called excellent if, for any quadratic form φ over F, the anisotropic part (φL)an of φ over L is defined over F; L / F is called universally excellent if L ⋅ E / E is excellent for any field extension E / F. We study the excellence property for a generic splitting field of a central simple F-algebra. In particular, we show that it is universally excellent if and only if the Schur index of the algebra is not divisible by 4. We begin by studying the torsion in the second Chow group of products of Severi–Brauer varieties and its relationship with the relative Galois cohomology group H3(L / F) for a generic (common) splitting field L of the corresponding central simple F-algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arason, J. Kr.: Cohomologische Invarianten quadratischer Formen, J. Algebra 36 (1975), 448-491.

    Google Scholar 

  2. Arason, J. Kr.: Excellence of F(φ)/F for 2-fold Pfister forms, Appendix II in [7] (1977).

  3. Blanchet, A.: Function fields of generalized Brauer-Severi varieties, Comm. Algebra 19(1) (1991), 97-118.

    Google Scholar 

  4. Colliot-Thélène, J.-L. and, Sujatha, R.: Unramified Witt groups of real anisotropic quadrics, Proc. Sympos. Pure Math. 58(2) (1995), 127-147.

    Google Scholar 

  5. Elman, R.: Quadratic forms and the u-invariant, III, Queen's Papers Pure Appl. Math. 46 (1977), 422-444.

    Google Scholar 

  6. Elman, R. and Lam, T. Y.: Pfister forms and K-theory of fields, J. Algebra 23 (1972), 181-213.

    Google Scholar 

  7. Elman, R., Lam, T. Y. and Wadsworth, A. R.: Amenable fields and Pfister extensions, Queen's Papers Pure Appl. Math. 46 (1977), 445-491.

    Google Scholar 

  8. Esnault, H., Kahn, B., Levine, M. and Viehweg, V.: The Arason invariant and mod 2 algebraic cycles, J. Amer. Math. Soc. 11(1) (1998), 73-118.

    Google Scholar 

  9. Fulton, W.: Intersection Theory, Springer, New York, 1984.

    Google Scholar 

  10. Fulton, W. and Lang, S.: Riemann-Roch Algebra, Springer, New York, 1985.

    Google Scholar 

  11. Van Geel, J.: Applications of the Riemann-Roch theorem for curves to quadratic forms and division algebras, Preprint, Université Catholique de Louvain, 1991.

  12. Hartshorne, R.: Algebraic Geometry, Springer, New York, 1977.

    Google Scholar 

  13. Hoffmann, D.W.: Splitting patterns and invariants of quadratic forms, Math. Nachr. 190 (1998), 149-168.

    Google Scholar 

  14. Hoffmann, D. W.: Twisted Pfister forms, Doc. Math. 1 (1996), 67-102.

    Google Scholar 

  15. Hurrelbrink, J. and Rehmann, U.: Splitting patterns of quadratic forms, Math. Nachr. 176 (1995), 111-127.

    Google Scholar 

  16. Izhboldin, O. T.: On the nonexcellence of field extensions F(π)/F, Doc. Math. 1 (1996), 127-136.

    Google Scholar 

  17. Izhboldin, O. T. and Karpenko, N. A.: Isotropy of 6-dimensional quadratic forms over function fields of quadrics, J. Algebra 209 (1998), 65-93.

    Google Scholar 

  18. Izhboldin, O. T. and Karpenko, N. A.: On the group H 3(F(ψ, D)/F), Doc. Math. 2 (1997), 297-311.

    Google Scholar 

  19. Karpenko, N. A.: Algebro-geometric invariants of quadratic forms, Algebra i Analiz 2(1) (1991), 141-162 (in Russian), Engl. transl.: Leningrad (St. Petersburg) Math. J. 2(1) (1991), 119–138.

    Google Scholar 

  20. Karpenko, N. A.: On topological filtration for Severi-Brauer varieties, Proc. Sympos. Pure Math. 58(2) (1995), 275-277.

    Google Scholar 

  21. Karpenko, N. A.: On topological filtration for Severi-Brauer varieties II, Amer. Math. Soc. Transl. 174(2) (1996), 45-48.

    Google Scholar 

  22. Karpenko, N. A.: Codimension 2 cycles on Severi-Brauer varieties, K-Theory 13(4) (1998), 305-330.

    Google Scholar 

  23. Karpenko, N. A. and Merkurjev, A. S.: Chow groups of projective quadrics, Algebra i Analiz 2(3) (1990), 218-235 (in Russian), Engl. transl.: Leningrad (St. Petersburg) Math. J. 2(3) (1991), 655–671.

    Google Scholar 

  24. Knebusch, M.: Generic splitting of quadratic forms, I, Proc. London Math. Soc. 33 (1976), 65-93.

    Google Scholar 

  25. Knebusch, M.: Generic splitting of quadratic forms, II, Proc. London Math. Soc. 34, (1977), 1-31.

    Google Scholar 

  26. Köck, B.: Chow motif and higher Chow theory of G/P, Manuscripta Math. 70 (1991), 363-372.

    Google Scholar 

  27. Lam, T. Y.: The Algebraic Theory of Quadratic Forms, Benjamin, Mass., 1973 (revised printing 1980).

    Google Scholar 

  28. Laghribi, A.: Formes quadratiques en 8 variables dont l'algèbre de Clifford est d'indice 8, K-Theory 12(4) (1997), 371-383.

    Google Scholar 

  29. Lewis, D. W. and Van Geel, J.: Quadratic forms isotropic over the function field of a conic, Indag. Math. 5 (1994), 325-339.

    Google Scholar 

  30. Mammone, P.: On the tensor product of division algebras, Arch. Math. 58 (1992), 34-39.

    Google Scholar 

  31. Manin, Yu. I.: Lectures on the K-functor in algebraic geometry, Russian Math. Surveys 24(5) (1969), 1-89.

    Google Scholar 

  32. Merkurjev, A. S.: On the norm residue symbol of degree 2, Dokl. Akad. Nauk SSSR 261 (1981), 542-547 (in Russian), Engl. transl.: Soviet Math. Dokl. 24 (1981), 546–551.

    Google Scholar 

  33. Merkurjev, A. S.: Kaplansky conjecture in the theory of quadratic forms, Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova 175 (1989), 75-89 (in Russian), Engl. transl.: J. Soviet Math. 57(6) (1991), 3489–3497.

    Google Scholar 

  34. Merkurjev, A. S.: Simple algebras and quadratic forms, Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991), 218-224 (in Russian), Engl. transl.: Math. USSR Izv. 38(1) (1992), 215–221.

    Google Scholar 

  35. Merkurjev, A. S. and Suslin, A. A.: The group K 3 for a field, Izv. Akad. Nauk SSSR Ser. Mat. 54(3) (1990), 522-545 (in Russian), Engl. transl.: Math. USSR, Izv. 36(3) (1991), 541–565.

    Google Scholar 

  36. Peyre, E.: Products of Severi-Brauer varieties and Galois cohomology, Proc. Sympos. Pure Math. 58(2) (1995), 369-401.

    Google Scholar 

  37. Pfister, A.: Quadratische Formen in beliebigen Körpern, Invent. Math. 1 (1966), 116-132.

    Google Scholar 

  38. Quillen, D.: Higher algebraic K-theory: I, In: H. Bass (ed.), Algebraic K-Theory I, Lecture Notes in Math. 341, Springer, New York, 1973, pp. 85-147.

    Google Scholar 

  39. Rost, M.: Hilbert 90 for K 3 for degree-two extensions, Preprint, 1986.

  40. Rost, M.: Quadratic forms isotropic over the function field of a conic, Math. Ann. 288 (1990), 511-513.

    Google Scholar 

  41. Rowen, L. H.: Ring Theory, Volume II, Pure Appl. Math. 128, Academic Press, San Diego, 1988.

    Google Scholar 

  42. Sansuc, J.-J.: Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. Reine Angew. Math. 327 (1981), 12-80.

    Google Scholar 

  43. Scharlau, W.: Quadratic and Hermitian Forms, Springer, New York, 1985.

    Google Scholar 

  44. Suslin, A. A.: Algebraic K-theory and norm-residue homomorphism, J. Soviet Math. 30 (1985), 2556-2611.

    Google Scholar 

  45. Schofield, A. and Van den Bergh, M.: The index of a Brauer class on a Brauer-Severi variety, Trans. Amer. Math. Soc. 333(2) (1992), 729-739.

    Google Scholar 

  46. Voevodsky, V.: The Milnor conjecture, Max-Planck-Institut für Mathematik in Bonn, Preprint MPI 97-8, 1997.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izhboldin, O.T., Karpenko, N.A. Generic Splitting Fields of Central Simple Algebras: Galois Cohomology and Nonexcellence. Algebras and Representation Theory 2, 19–59 (1999). https://doi.org/10.1023/A:1009910324736

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009910324736

Navigation