Skip to main content
Log in

Effect of Liquid Phase and Vaporization on the Formation of Microstructure of Pr Doped ZnO Varistor

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Our previous works and our recent data were summarized to discuss the effect of liquid phase formation and vaporization of the components on the densification, grain growth and change of the microstructure of Pr doped ZnO ceramics in air. In the ZnO-Pr2O3 binary system, eutectic liquid forms at 1382± 5°C° and significant vaporization of the components occurred above the eutectic temperature. Below eutectic temperature (1350°C), only 0.1 mol % of Pr doping into ZnO brought about the grain growth of ZnO, however further addition of Pr brought about the suppression of the grain growth. Comparing the grain size distribution at the surface and inside part of Pr doped ZnO ceramics, it was clarified that wider grain size distribution was observed at the surface than inside part. At the temperature just below the eutectic (1370°C), abnormal grain growth was also observed. Depth profile of Pr content indicated that no concentration gradient was observed below eutectic temperature (1350°C), however above eutectic temperature (1500°C), condensation of Pr was observed at the surface. Grain growth rate as well as weight loss rate were drastically increased between 1350 and 1370°C, which suggested that formation of liquid phase accelerate the grain growth rate and weight loss rate. Consequently the microstructure of Pr doped ZnO ceramics was formed by both effects on the formation of liquid phase and on the vaporization of the components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Masuyama, M. Matsuoka, and Y. Ida, National Technical Report, 15, 216 (1968).

    Google Scholar 

  2. M. Namba, I. Nagasawa, M. Miyagawa, T. Ishii, K. Mukae, and K. Tsuda, Fujijihou, 47, 1 (1974).

    Google Scholar 

  3. M. Matsuoka, Jpn. J. Appl. Phys., 10, 736 (1971).

    Google Scholar 

  4. J. H. Hwang, T. O. Mason, and V. P. Dravid, J. Am. Ceram. Soc., 77, 1499 (1994).

    Google Scholar 

  5. G. Y. Sung, S. McKernan, and C. B. Carter, J. Mater. Res., 7, 474 (1992).

    Google Scholar 

  6. A. B. Alles and V. L. Burdick, J. Appl. Phys., 70, 6883 (1991).

    Google Scholar 

  7. A. B. Alles, R. Puskas, G. Callahan, and V. L. Burdick, J. Am. Ceram. Soc., 76, 2098 (1993).

    Google Scholar 

  8. M. Shida, S. Y. Chun, N. Wakiya, K. Shinozaki, and N. Mizutani, J. Ceram. Soc. Jpn., 104, 44 (1996).

    Google Scholar 

  9. S.-Y. Chun, N. Wakiya, K. Shinozaki, and N. Mizutani, J. Ceram. Soc. Jpn., 104, 1056 (1996).

    Google Scholar 

  10. S.-Y. Chun, N. Wakiya, H. Funakubo, K. Shinozaki, and N. Mizutani, J. Am. Ceram. Soc., 80, 995 (1997).

    Google Scholar 

  11. T. Sakurai, Universal Program System for Crystallographic Computation (Crystallographic Society of Japan, 1967).

  12. R. L. Fullman, J. Met., 5, 447 (1953).

    Google Scholar 

  13. I. S. Kulikov, Thermodinamika Okidov Spravochik Nisso Tsuushinsha, Moscow, USSR, 1986) p. 263

    Google Scholar 

  14. K. Hamano, S. Ri, and Z. Nakagawa, Yogyo-Kyokai-Shi, 92, 46 (1984).

    Google Scholar 

  15. F. S. Galasso, Structure and Properties of Inorganic Solids, (Pergamon Press Inc., 1970) p. 99

  16. M. Drofenik, J. Am. Ceram. Soc., 5, 311 (1987).

    Google Scholar 

  17. P. J. Jorgensen and P. C. Andersen, J. Am. Ceram. Soc., 48, 207 (1965).

    Google Scholar 

  18. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics, 2nd ed, pp. 171-448 (Wiley, New York, 1976).

    Google Scholar 

  19. Y. S. Lee, K. S. Liao, and T. Y. Tseng, J. Am. Ceram. Soc., 79, 2379 (1996).

    Google Scholar 

  20. I. G. Solorzano, J. B. V. Sande, K. K. Baek, and H. L. Tuller, Mat. Res. Soc. Symp. Proc., 295, 189 (1993).

    Google Scholar 

  21. S. K. Dutta and R. M. Spiggs, J. Am. Ceram. Soc., 53, 61 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wakiya, N., Chun, SY., Lee, C.H. et al. Effect of Liquid Phase and Vaporization on the Formation of Microstructure of Pr Doped ZnO Varistor. Journal of Electroceramics 4 (Suppl 1), 15–23 (1999). https://doi.org/10.1023/A:1009913415608

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009913415608

Navigation