Skip to main content
Log in

Percolation Behavior of Conductor-Insulator Composites with Varying Aspect Ratio of Conductive Fiber

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The electrical properties of composite electroceramics are determined by the concentration, shape and distribution of filler phase in matrix. The carbon fiber-filled polymer was chosen as a model system and the electrical conductivity was measured as a function of carbon fiber content and the aspect ratio (AR) of the fibers to understand the percolation behavior of the composites. The composites of carbon fiber (1∼9 vol.%) and thermoplastic polymer were fabricated in a mold press with the aspect ratio of carbon fiber varying between 4 and 10. The percolation threshold volume concentrations (V c) of transition from the insulator to the conductor decreased as the fiber aspect ratio increased. With the fibers segregated at the polymer-polymer interfaces in the present study, V c values were much smaller than those with the fibers randomly distributed in the matrix shown in other studies. The inverse relation between V c and AR was found as expected. From the comparison with other experimental and simulated data, we concluded that the slope in 1/V c versus AR plot is a strong function of fiber segregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.E. Newnham, Chemtech, Dec., 732 (1986).

  2. R.E. Newnham, Chemtech, Jan., 38 (1987).

  3. D.S. McLachlan, M. Blaszkiewicz, and R.E. Newnham, J. Am. Ceram. Soc., 73, 2187 (1990).

    Google Scholar 

  4. D.M. Bigg, Poly. Eng. & Sci., 19, 1188 (1979).

    Google Scholar 

  5. J.Y. Yi, M.S. Thesis, Pohang University of Science and Technology, Korea, 1998.

  6. Y.M. Park and G.M. Choi, J. Electrochem. Soc., 146, 883 (1999).

    Google Scholar 

  7. Y.M. Park and G.M. Choi, Sol. St. Ionics, 120, 265 (1999).

    Google Scholar 

  8. D.G. Han and G.M. Choi, J. Electroceram., 2, 57 (1998).

    Google Scholar 

  9. D.G. Han and G.M. Choi, Sol. St. Ionics, 106, 71 (1998).

    Google Scholar 

  10. K. Wenderoth and J. Petermann, Poly. Composites, 10, 52 (1989).

    Google Scholar 

  11. B.L. Lee, Poly. Eng. and Sci., 32, 36 (1992).

    Google Scholar 

  12. A. Larena and G. Pinto, Poly. Composites, 16, 536 (1995).

    Google Scholar 

  13. S. Yoshikawa, T. Ota, and R. Newnham, J. Am. Ceram. Soc., 73, 263 (1990).

    Google Scholar 

  14. G.R. Ruschau, S. Yoshikawa, and R.E. Newnman, J. Appl. Phys., 72, 953 (1992).

    Google Scholar 

  15. I. Balberg, C.H. Anderson, S. Alexander, and N. Wagner, Phys. Rev. B, 30, 3933 (1984).

    Google Scholar 

  16. A.L.R. Bug, S.A. Safran, and I. Webman, Phys. Rev. B, 33, 4716 (1986).

    Google Scholar 

  17. E. Charlaix, E. Guyon, and N. River, Sol. St. Comm., 50, 999 (1984).

    Google Scholar 

  18. E.D. Sichel, Carbon black-polymer composites (Marcel Dekker, Inc., New York, 1982), p. 7.

    Google Scholar 

  19. E.H. Immergut, Polymer Handbook, 3rd ed. (John Wieley & Sons Inc., New York, 1989), pp. V5–V7.

    Google Scholar 

  20. J. Donnet and R.C. Bansal, Carbon Fibers (Marcel Dekker, Inc., New York 1984), p. 201.

    Google Scholar 

  21. N. Ueda and M. Taya, J. Appl. Phys., 60, 459 (1986).

    Google Scholar 

  22. E.A. Holm and M.J. Cima, J. Am. Ceram. Soc., 72, 303 (1989).

    Google Scholar 

  23. S. De Bondt, L. Froyen, and A. Deruyttere, J. Mater. Sci., 27, 1383 (1992).

    Google Scholar 

  24. A.A. Ogale and S.F. Wang, Comp. Sci. & Tech., 46, 379 (1993).

    Google Scholar 

  25. F. Carmona, Physica A, 461 (1989).

  26. A. Malliaris and D.T. Turner, J. Appl. Phys., 42, 614 (1971).

    Google Scholar 

  27. R.P. Kusy, J. Appl. Phys., 48, 5301 (1977).

    Google Scholar 

  28. S.F. Wang and A.A. Ogale, Comp. Sci. & Tech., 46, 93 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi, J.Y., Choi, G.M. Percolation Behavior of Conductor-Insulator Composites with Varying Aspect Ratio of Conductive Fiber. Journal of Electroceramics 3, 361–369 (1999). https://doi.org/10.1023/A:1009913913732

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009913913732

Navigation