Skip to main content
Log in

Effect of Silica Doping on the Electrical Conductivity of 3 mol % Yttria-Stabilized Tetragonal Zirconia Prepared by Colloidal Processing

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Silica-doped (SiO2 = 0 - 1.0 wt%) 3Y-TZP (3 mol % yttria-doped tetragonal zirconia polycrystal) ceramics are prepared from hetero-coagulated aqueous suspension by colloidal processing. Consolidation of the suspension was carried out by pressure filtration at 10 MPa followed by cold isostatic pressing (CIP) at 400 MPa. Consolidated compacts are densified to a relative density over 99% by sintering at 1573 K for 2 h. The formation of glass pockets at grain boundary multiple junctions was observed by SEM for ≥0.5 wt % silica-doped samples. Electrical conductivity measurements were performed to evaluate the modification of grain-boundaries by silica. The apparent grain boundary conductivity decreased with an increase in silica content and became nearly constant above 0.3 wt % of silica, while the bulk conductivity was constant with silica content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Wakai, S. Sakaguchi, and Y. Matsuno, Advanced Ceramic Materials, 1, 259 (1986).

    Google Scholar 

  2. F. Wakai, S. Sakaguchi, and H. Kato, J. Ceram. Soc. Jpn., 94, 721 (1986).

    Google Scholar 

  3. F. Wakai, Tetsu-to Hagané, 75, 389 (1989).

    Google Scholar 

  4. T. G. Nieh and J. Wadsworth, Acta metall. mater., 38, 1121 (1990).

    Google Scholar 

  5. M. J. Verkerk, A. J. A. Winnubst, and A.J. Burggraaf, J. Mat. Sci., 17, 3113 (1982).

    Google Scholar 

  6. M. Miyayama, H. Yanagida, and A. Asada, Am. Ceram. Soc. Bull., 64, 660 (1985).

    Google Scholar 

  7. K. Kajihara, Y. Yoshizawa, and T. Sakuma, Acta metall. mater., 43, 1235 (1995).

    Google Scholar 

  8. K. Hiraga, H. Y. Yasuda, and Y. Sakka, Mater. Sci. Eng. A, (in press).

  9. C. H. Schilling and I. A. Aksay, Engineered Materials Handbook Vol. 4, Ceramics and Grasses, ASM International, pp. (1991), 153-160

  10. F. F. Lange and K. T. Miller, Am. Ceram. Soc. Bull., 66, 1498 (1987).

    Google Scholar 

  11. F. F. Lange, J. Am. Ceram. Soc., 72, 3 (1989).

    Google Scholar 

  12. M. J. Verkerk, A. J. A. Winnubst, and A. J. Burggraaf, J. Mat. Sci., 17, 3113 (1982).

    Google Scholar 

  13. K. C. Radford and R. J. Bratton, J. Mat. Sci., 14, 66 (1979).

    Google Scholar 

  14. N. Bonanos, R. K. Sloywinski, B. C. H. Teele, and E. P. Butler, J. Mat. Sci. Lett., 3, 245 (1984).

    Google Scholar 

  15. S. Rajendran, J. Drennanm, and S. P. S. Badwal, J. Mat. Sci. Lett., 6, 1431 (1987).

    Google Scholar 

  16. S. P. S. Badwal and J. Drennan, J. Mat. Sci., 22, 3231 (1987).

    Google Scholar 

  17. F. T. Ciacchi, K. M. Crane, and S. P. S. Badwal, Solid State Ionics, 73, 49 (1994).

    Google Scholar 

  18. M. Gödickemeier, B. Michel, A. Orliukas, P. Bohac, K. Sasaki, L. Gauckler, H. Heinrich, P. Schwander, G. Kostorz, H. Hofmann, and O. Frei, J. Mater. Res., 9, 1228 (1994).

    Google Scholar 

  19. G. Chiodelli, G. Flor, and M. Scagliotti, Solid State Ionics, 91, 109 (1996).

    Google Scholar 

  20. M. Aoki, Y.-M. Chiang, I. Kosacki, J.-R. Lee, H. Tuller, and Y. Liu, J. Am. Ceram. Soc., 79, 1169 (1996).

    Google Scholar 

  21. M. C. Steil and F. Thevenot, J. Electrochem. Soc., 144, 390 (1997).

    Google Scholar 

  22. T. Uchikoshi, Y. Sakka, K. Ozawa, and K. Hiraga, Mat. Res. Soc. Symp. Proc., 457, 33 (1997).

    Google Scholar 

  23. T. Uchikoshi, Y. Sakka, and H. Okuyama, J. Jpn. Soc. Powder and Powder Metall., 42, 309 (1995).

    Google Scholar 

  24. T. Uchikoshi, Y. Sakka, and K. Ozawa, Proc. 5th. World Congr. Chem. Eng., IV, 1007 (1996).

    Google Scholar 

  25. M. I. Mendelson, J. Am. Ceram. Soc., 52, 443 (1969).

    Google Scholar 

  26. K. C. Gradfoord and R. J. Bratton, J. Mat. Sci., 14, 59 (1979).

    Google Scholar 

  27. Y. Ikuhara, P. Thavorniti, and T. Sakuma, Materials Science Forum, 243-245, 345 (1997).

    Google Scholar 

  28. M. Gust, G. Goo, J. Wolfenstine, and M. L. Mecartney, J. Am. Ceram. Soc., 76, 1681 (1993).

    Google Scholar 

  29. D. R. Clarke, Ultramicroscopy, 4, 33 (1979).

    Google Scholar 

  30. C. D. Terwilliger and Y.-M. Chiang, Acta metall. Mater., 43, 319 (1995).

    Google Scholar 

  31. H. Schubert, J. Am. Ceram. Soc., 69, 270 (1986).

    Google Scholar 

  32. CRC Handbook of Chemistry and Physics, edited by D. R. Lide and H. P. R. Frederikse (CRC Press Inc., Boca Raton, 1997), p. 12-56.

    Google Scholar 

  33. Y. Sakka, T. Uchikoshi, K. Ozawa, K. Morita, H. Yasuda, and K. Hiraga, Proc. US-Jpn. Workshop on Electrically Active Ceramic Interfaces, (1998), p. 97.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uchikoshi, T., Sakka, Y. & Hiraga, K. Effect of Silica Doping on the Electrical Conductivity of 3 mol % Yttria-Stabilized Tetragonal Zirconia Prepared by Colloidal Processing. Journal of Electroceramics 4 (Suppl 1), 113–120 (1999). https://doi.org/10.1023/A:1009919011491

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009919011491

Navigation