Skip to main content
Log in

Thermodynamic Stability and Interfacial Impedance of Solid-Electrolyte Cells with Noble-Metal Electrodes

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

In solid-electrolyte cells, the electrode-electrolyte interfacial stability and impedance are found to be dependent on temperature, atmosphere, current density, microstructure and the process history of the cell. The modifications induced by temperature and oxygen pressure on the impedance spectra of Pt/Yttria-stabilized zirconia (YSZ) and Pd/YSZ interfaces have been studied. The interfacial impedance was controlled by adsorption/desorption of oxygen with a Langmuir-type dependency. When the surface coverage was small, the interfacial impedance decreased with increase in temperature and \(P_{O_2 }\). In certain temperature and \(P_{O_2 }\) regimes and depending on the process history, the metal electrode formed stable oxygen-containing species. In this region, the interfacial impedance increased markedly and its \(P_{O_2 }\) dependence also changed. Anodic and cathodic currents altered the local thermodynamic conditions at the charge-transfer sites and accordingly influenced the interfacial impedance. The concentration of oxygen-containing species and the interfacial microstructure are shown to influence the shape of the impedance response. Pt was found to form a neck at the YSZ electrolyte and Pd did not. The electrode polarization in the case of Pt/YSZ interface corresponded to one impedance-response arc signifying charge-transfer resistance at the three-phase boundary (TPB), gas/Pt/YSZ interface. For the Pd/YSZ interface, the electrode polarization corresponded to two impedance-response arcs at low \(P_{O_2 }\). The high-frequency response is related to charge transfer at the TPB and the low frequency to the gas-phase mass transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.-D. Wiemhofer, Ber. Bunsenges. Phys. Chem., 97, 461 (1993).

    Google Scholar 

  2. H.-D. Wiemhofer, Solid State Ionics, 75, 167 (1995).

    Google Scholar 

  3. G.B. Barbi, Ber. Bunsenges. Phys. Chem., 99, 741 (1995).

    Google Scholar 

  4. E. Siebert, Electrochimica Acta., 39, 1621 (1994).

    Google Scholar 

  5. B.C.H. Steele, Solid State Ionics, 75, 157 (1995).

    Google Scholar 

  6. C. Schwandt and W. Weppner, J. Electrochem. Soc., 144, 3728–3738 (1997).

    Google Scholar 

  7. S. Sridhar, V. Stancovski, and U. Pal, J. Electrochem. Soc., 144, 2479–2485 (1997).

    Google Scholar 

  8. I. Samsonov and G. Valentinovich, The Oxide Handbook (Plenum Press, NY, 1982).

    Google Scholar 

  9. J.L. Gland, Surface Science, 93, 487 (1980).

    Google Scholar 

  10. J.L Gland, B.A. Sexton, and G.B. Fisher, Surface Science, 95, 587 (1980).

    Google Scholar 

  11. G.A. Somorjai, Chemistry in Two Dimensions—Surfaces, (Cornell University Press, Ithaca and London, 1981), p. 500.

    Google Scholar 

  12. B.L. Kuzin and M.A. Komarov, Solid State Ionics, 39, 163 (1990).

    Article  Google Scholar 

  13. B.J. Berry, Surface Science, 120, 409 (1982).

    Google Scholar 

  14. C.G. Vayenas and N. Michaels, Surface Science, 120, 405 (1982).

    Google Scholar 

  15. O.J. Velle, T. Norby, and P. Kofstad, Solid State Ionics, 47, 161 (1991).

    Google Scholar 

  16. Ihsan Barin, Thermodynamic Data of Pure Substances, VCH, 1168 (1993).

    Google Scholar 

  17. Cl. Duval, Inorganic Thermogravimetric Analysis 2nd edition (Elsevier, Amsterdam, 1963), p. 586.

    Google Scholar 

  18. S.P.S. Badwal and H.J. de Bruin, J. Electrochem. Soc., 129, 1921 (1982).

    Google Scholar 

  19. J. Van Herle and A.J. McEvoy, Ber. Bunsenges. Phys. Chem., 97, 470 (1993).

    Google Scholar 

  20. S. Sridhar, Ph. D. Thesis (MIT Cambridge, MA, 1997).

  21. T.H. Etsell and S.N. Flengas, J. Electrochem. Soc., 118, 1890 (1971).

    Google Scholar 

  22. T.M. Gür, I.D. Raistrick, and D.A. Huggins, J. Electrochem. Soc., 127, 2620 (1980).

    Google Scholar 

  23. D. Braunshtein, D.S. Tannhauser, and I. Riess, J. Electrochem. Soc., 128, 82 (1981).

    Google Scholar 

  24. J.R. Anderson, Structure of Metallic Catalysts (AP Press, NY, 1975), p. 13.

    Google Scholar 

  25. J.E. Bauerle, J. Phys. Chem. Solids, 30, 2657 (1969).

    Article  Google Scholar 

  26. F.K. Moghadam and D.A. Stevenson, J. Electrochem. Soc., 133, 1329 (1986).

    Google Scholar 

  27. S. Pizzini, Fast Ionic Transport in Solids, ed. by W. van Gool, (North Holland Press, Amsterdam, 1973), p. 461.

    Google Scholar 

  28. J. Mizusaki, K. Amano, S. Yamauchi, and K. Fueki, Solid State Ionics, 22, 323 (1987).

    Google Scholar 

  29. D.Y. Wang and A.S. Nowick, J. Electrochem. Soc., 128, 55 (1981).

    Google Scholar 

  30. J.R. Macdonald, Impedance Spectroscopy—Emphasizing Solid Materials and Systems (John Wiley, 1987), p. 71.

  31. P.G. Bruce, Solid State Electrochemistry (Cambridge University Press, 1995).

  32. A.J. Winnubst, A.H.A. Scharenborg, and A.J. Burggraaf, Solid State Ionics., 14, 319 (1984).

    Google Scholar 

  33. M.J. Ververk and A.J. Burggraaf, J. Electrochem. Soc., 130, 76 (1983).

    Google Scholar 

  34. J. Bockris and A.K.N. Reddy, Modern Electrochemistry Vol. 2, Chapter 9 (1977).

  35. D.R. Franceschetti and A.P. Ross, Appl. Phys. A., 49, 111 (1989).

    Google Scholar 

  36. D.Y Wang and A.S. Nowick, J. Electrochem. Soc., 126, 1166 (1979).

    Google Scholar 

  37. J.A. Lane, S. Adler, P.H. Middleton, and B.C.H. Steele, Solid Oxide Fuel Cells IV, ed. by M. Dokiya, O. Yamamoto, H. Tagawa, and S.C. Singhal, ECS (Pennington, New Jersey, 1995), p. 584.

    Google Scholar 

  38. S.B. Adler, J.A. Lane, and B.C.H. Steele, J. Electrochem. Soc., 143, 3554 (1996).

    Google Scholar 

  39. A.M. Svensson, S. Sunde, and K. Niscancioglu, J. Electrochem. Soc., 144, 2719 (1997).

    Google Scholar 

  40. H. Okamoto and T. Aso, Japanese J. Appl. Phys., 6, 779 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stancovski, V., Sridhar, S. & Pal, U.B. Thermodynamic Stability and Interfacial Impedance of Solid-Electrolyte Cells with Noble-Metal Electrodes. Journal of Electroceramics 3, 279–299 (1999). https://doi.org/10.1023/A:1009945921421

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009945921421

Keywords

Navigation