Skip to main content
Log in

Valence Band Structure of ZnO (1010) Surface by Cluster Calculation

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Discrete variational (DV) Xα cluster method has been employed in calculating electronic structures of ZnO. Electronic structures of the bulk and the non-polar surface model clusters are calculated with inclusion of electrostatic potentials in the bulk and near the surface, and the electronic origins of experimental spectra and chemical bonds at the surface are examined in detail. The valence band structure constructed by Zn-3d and O-2p bands is much influenced by electrostatic potentials in ZnO. It is found that the reduction of an electrostatic potential near the surface gives rise to the difference of the valence band structures between in the bulk and at the surface. The calculated density of states at the non-polar surface of ZnO, where the Zn-3d and O-2p bands are more widely separated than in the bulk, is in good agreement with the experimental UPS. In addition, a Zn-O bond at the surface is found to show stronger covalency than that in the bulk, as a result of the change of the valence band structure due to the effect of the electrostatic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. E. Henrich and P. A. Cox, The Surface Science of Metal Oxides (Cambridge, New York, 1994).

    Google Scholar 

  2. Y. M. Chiang, D. P. Birnie, and W. D. Kingery, Physical Ceramics (John Wiley & Son, New York, 1997).

    Google Scholar 

  3. H. Lüth, G. W. Rubloff, and W. D. Grobman, Solid State Commun., 18, 1427 (1976).

    Google Scholar 

  4. W. Göpel, R. S. Bauer, and G. Hausson, Surf. Sci., 99, 138 (1980).

    Google Scholar 

  5. W. Göpel, J. Pollmann, I. Ivanov, and B. Reihl, Phys. Rev., B26, 3144 (1982).

    Google Scholar 

  6. W. Ranke, Solid State Commun., 19, 685 (1976).

    Google Scholar 

  7. S. V. Didziulis, S. L. Cohen, K. D. Butcher, and E. I. Solomon, Inorg. Chem., 27, 2238 (1988).

    Google Scholar 

  8. K. Jacobi, G. Zwicker, and A. Gutmann, Surf. Sci., 141, 109 (1984).

    Google Scholar 

  9. L. Ley, R. A. Pollak, F. R. McFeely, S. P. Kowalczyk, and D. A. Shirley, Phys. Rev., B9, 600 (1974).

    Google Scholar 

  10. S. Bloom and I. Ortenburger, Phys. Stat. Sol., (b) 58, 561 (1973).

    Google Scholar 

  11. K. C. Mishra, P. C. Schmidt, K. H. Johnson, B. G. DeBoer, J. K. Berkowitz, and E. A. Dale, Phys. Rev., B42, 1423 (1990).

    Google Scholar 

  12. M. H. Sukkar, K. H. Johnson, and H. L. Tuller, Mater. Sci. Eng., B6, 49 (1990).

    Google Scholar 

  13. P. Schröer, P. Krüger, and J. Pollmann, Phys. Rev., B47, 6971 (1993).

    Google Scholar 

  14. C. K. Yang and K. S. Dy, Solid State Commun., 88, 491 (1993).

    Google Scholar 

  15. Y. N. Xu and W. Y. Ching, Phys. Rev., B48, 4335 (1993).

    Google Scholar 

  16. D. Vogel, P. Krüger and J. Pollmann, Phys. Rev., B54, 5495 (1996).

    Google Scholar 

  17. I. Ivanov and J. Pollmann, Phys. Rev., B24, 7275 (1981).

    Google Scholar 

  18. Y. R. Wang and C. B. Duke, Surf. Sci., 192, 309 (1987).

    Google Scholar 

  19. P. Schröer, P. Krüger, and J. Pollmann, Phys. Rev., B49, 17092 (1994).

    Google Scholar 

  20. C. B. Duke, A. R. Lubinsky, S. C. Chang, B. W. Lee, and P. Mark, Phys. Rev., B15, 4865 (1977).

    Google Scholar 

  21. C. B. Duke, R. J. Meyer, A. Paton, and P. Mark, Phys. Rev., B18, 4225 (1978).

    Google Scholar 

  22. D. E. Ellis, H. Adachi, and F. W. Averill, Surf. Sci., 58, 497 (1976).

    Google Scholar 

  23. H. Adachi, M. Tsukada, and C. Satoko, J. Phys. Soc. Jpn., 45, 875 (1978).

    Google Scholar 

  24. M. Tsukada, E. Miyazaki, and H. Adachi, J. Phys. Soc. Jpn., 50, 3032 (1981).

    Google Scholar 

  25. R. Kuwabara, H. Adachi, and T. Morimoto, Surf. Sci., 193, 271 (1988).

    Google Scholar 

  26. R. Sekine, H. Adachi, and T. Morimoto, Surf. Sci., 208, 177 (1989).

    Google Scholar 

  27. R. E. Watson, M. L. Perlman, and J. W. Davenport, Surf. Sci., 115, 117 (1982).

    Google Scholar 

  28. J. E. Lennard-Jones and B. M. Dent, Trans. Faraday Soc., 24, 92 (1928).

    Google Scholar 

  29. S. C. Abrahams and J. L. Bernstein, Acta Cryst., B25, 2254 (1969).

    Google Scholar 

  30. H. Coker, J. Phys. Chem., 87, 2512 (1983).

    Google Scholar 

  31. R. S. Mulliken, J. Chem. Phys., 23, 1833 (1955).

    Google Scholar 

  32. Handbook of Laser Science and Technology, edited by M. J. Weber (CRC, Cleveland, 1986), Vol. III.

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Matsunaga, K., Oba, F., Tanaka, I. et al. Valence Band Structure of ZnO (1010) Surface by Cluster Calculation. Journal of Electroceramics 4 (Suppl 1), 69–80 (1999). https://doi.org/10.1023/A:1009946306948

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009946306948

Navigation