Skip to main content
Log in

Properties of Pyrochlore Ruthenate Cathodes for Intermediate Temperature Solid Oxide Fuel Cells

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Powders of Bi2Ru2O7.3, Pb2Ru2O6.5 and Y2Ru2O7 were prepared and their reactivity with Ce0.9Gd0.1O1.95 (CGO) electrolyte powders examined. Bi2Ru2O7.3 and Pb2Ru2O6.5 reacted with CGO but Y2Ru2O7 appeared stable when heated in contact with CGO powder at 900C for 24 h. Symmetrical electrodes of Y2Ru2O7-x were deposited on CGO ceramic pellets, either by tape-casting or by electrostatic assisted chemical vapor deposition (EACVD) techniques, and cathode resistivities determined by impedance spectroscopy. Undoped Y2Ru2O7 electrodes exhibited very high area specific resistivities (ASR) at 627C (∼4000 Ωcm2), but by doping with SrO the resistivity was reduced almost 100×to 47 Ωcm2. The behavior of the Y2Ru2O7 cathodes was interpreted in terms of available oxygen ion transport data for the Gd2Ti2O7 series, and it was concluded that optimization of pyrochlore ruthenate compositions should be possible to improve further the oxygen reduction behavior of ruthenate cathodes for intermediate temperature solid oxide fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Watanabe, H. Uchida, M. Shibata, N. Mochizuki, and K. Amikura, J. Electrochem. Soc., 141, 342 (1994).

    Google Scholar 

  2. M. Sahibzada, S.J. Benson, R.A. Rudkin, and J.A. Kilner, in Proc. 11th Int. Conf. on Solid State Ionics (Hawai, Nov. 1997). To be published in Solid State Ionics (1998).

  3. H. Sasaki, M. Susuki, S. Otoshi, A. Kajimura, and M. Ippommatsu, J. Electrochem. Soc., 139, L12 (1992).

    Google Scholar 

  4. M. Hrovat, J. Holc, and D. Kolar, Solid State Ionics, 68, 99 (1994).

    Google Scholar 

  5. M.A. Subramanian, G. Aravamudan, and G.V. Subba Rao, Prog. Solid State Chem., 15, 55 (1983).

    Google Scholar 

  6. H.S. Horowitz, J.M. Longo, H.H. Horowitz, and J.T. Lewandowski, Am. Chem. Soc. Symp. Series, 279, 143 (1985).

    Google Scholar 

  7. R.G. Egdell, J.B. Goodenough, A. Hamnett, and C.C. Naish, J. Chem. Soc., Faraday Trans. 1, 79, 893 (1983).

    Google Scholar 

  8. N.M. Markovic and P.N. Ross jr., J. Electrochem. Soc., 141, 2590 (1994).

    Google Scholar 

  9. J.D. Faktor, J.A. Kilner, and B.C.H. Steele, Proc. 2nd. European Conf. on Solid State Chemistry eds R. Metselaar, H.J.M. Heijligers and J. Schoonman (Elsevier, 1982), p. 207.

  10. H.L. Tuller, S. Kramer, and M.A. Spears, in Proc 14th Riso Symp. on Materials Science eds F.W. Poulsen et al. (Riso National Lab., Denmark, 1993), p. 151.

    Google Scholar 

  11. M.A. Spears and H.L. Tuller, in Proc. 2nd Intl. Symp. on Ionic and Mixed Conducting Ceramics, eds T.A. Ramanarayanan, W.L. Worrell, and H.L. Tuller, ECS Proc. Vol. 94–12 (Electrochemical Society, New Jersey, USA, 1994), p. 94.

    Google Scholar 

  12. H.L. Tuller and M. Spears, in Proc. 1st European SOFC Forum, ed. U. Bossel, (ISBN 3–922–14-X, Switzerland, 1994), p. 435.

  13. M. Pechini, US. Patent 3,330,697 (11 July, 1967).

  14. L.A. Chick, L.R. Pederson, G.D. Maupin, J.L. Bates, L.E. Thomas, and G.J. Exarhos, Materials Lett., 10, 6 (1990).

    Google Scholar 

  15. P.A. Lane, Investigations of the Vapor Phase Growth of Oxide Films from Metal Alkoxides (Ph.D Thesis, University of London, October, 1988).

  16. K.-L. Choy, W. Bai, and B.C.H. Steele, in SOFC-V, Proc. Vol 97–40, eds U. Stimming et al. (Electrochem. Soc., New Jersey, USA, 1997), p. 1177.

    Google Scholar 

  17. A.A. van Zomeren, E.M. Kelder, J.C.M. Marijnissen, and J. Schoonman, J. Aerosol Sci., 25, 1229.

  18. S. Linquette-Mailley, A. Caneiro, E. Djurado, G. Mairesse, and J. Fouletier, Solid State Ionics, 107, 191 (1998).

    Google Scholar 

  19. Y. Senzaki, M.J. Hampden-Smith, T.V. Kodas, and J.W. Hussler, J. Am. Ceram. Soc., 78, 2977 (1995).

    Google Scholar 

  20. F.H. van Heuveln and H.J.M. Bouwmeester, J. Electrochem. Soc., 144, 134 (1997).

    Google Scholar 

  21. B.C.H. Steele, Solid State Ionics, 94, 239 (1997).

    Google Scholar 

  22. S.B. Adler, J.A. Lane, and B.C.H. Steele, J. Electrochem. Soc., 143, 3554 (1996).

    Google Scholar 

  23. S.J. Benson, R.J. Chater, and J.A. Kilner, in Proc. 3rd Intl. Symp. on Ionic and Mixed Conducting Ceramics, eds T.A. Ramanarayanan, W.L. Worrell, and H.L. Tuller, ECS Proc. Vol. 97–24 (Electrochemical Society, NewJersey, USA, 1997), p. 596.

    Google Scholar 

  24. J.-M. Bae, Properties of selected oxide cathodes for solid oxide fuel cell (Ph.D Thesis, University of London, May, 1996).

  25. P. Triggs, Helvetica Physica Acta, 58, 657 (1985).

    Google Scholar 

  26. P.A. Cox, Transition Metal Oxides (Oxford, 1992).

  27. F.P.F. van Berkel, Ruthenates: Phase Relations, Structural and Catalytic Properties, (Ph.D. Thesis, University of Leiden, Netherlands, December, 1988).

    Google Scholar 

  28. R.J. Bourchard and J.L. Gillson, Mater. Res. Bull., 6, 669 (1971).

    Google Scholar 

  29. H.M. Peacock, Solid State Oxide Chemistry of Ruthenium (Ph.D. Thesis, University of Aberdeen, November, 1988).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bae, JM., Steele, B.C.H. Properties of Pyrochlore Ruthenate Cathodes for Intermediate Temperature Solid Oxide Fuel Cells. Journal of Electroceramics 3, 37–46 (1999). https://doi.org/10.1023/A:1009962831952

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009962831952

Navigation