Skip to main content
Log in

Chemical Variations in Barium Titanate Powders and Dispersants

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Commercial raw materials for multilayer ceramic capacitors—barium titanate (BT) and ammonium polyacrylate (APA) dispersant—were examined for lot-to-lot variations which cause poor reproducibility in BT slips and in capacitor chips. Two lots of BT supplied by a commercial source were different with respect to surface species examined by Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, electrokinetic sonic amplitude and total carbon analysis. It was found that there was more APA dispersant chemisorption on BT when the BT surface was more hydroxylated and less carbonated. For the dispersant, the two lots differed in pH and ammonium ion content. The amount of APA dispersant adsorbed on BT depended more on the ceramic powder surface species than on the chemical differences in APA lots.

The electrokinetic sonic amplitude (ESA) and zeta potentials of the two lots of as-received BT were small but positive. The BT lot with more surface hydroxyls exhibited slightly higher zeta potential values. The BT with more carbonate was more stable in terms of aging rate in water. Aging in water increased the positive zeta potential by increasing Ba2+ dissolution and adsorption. With the APA dispersant, the BT surface became less positive, but more stable and exhibited an isoelectric point of∼10.6. It can be concluded that the dispersion of BT in the as-dispersed pH range is mainly by steric stabilization with little contribution from electrostatic charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Constantino, Am. Ceram. Soc. Bull., 71, 787 (1992).

    Google Scholar 

  2. R. Nami, Ceramic Industry, 1996, p. 25.

  3. B.H. Marks, Electronics, 21, 116 (1948).

    Google Scholar 

  4. R.C. Bradt and G.S. Ansell, J. of Am. Ceram. Soc., 52, 192 (1969).

    Google Scholar 

  5. K.W. Plessner, Proc. Phys. Soc. (Physical Society, London, 1956) 69 (444B) p. 1261.

    Google Scholar 

  6. M.C. McQuarrie and W.R. Bussem, Amer. Ceram. Soc. Bull., 34, 402 (1955).

    Google Scholar 

  7. Proc. Center for Dielectric Studies Symp. on Improvement of Multilayer Capacitors Reliability, (Penn State Univ., University Park, PA, 1989).

  8. J.C. McLarney, Aging effect in barium titanate dielectric (Master's Thesis, Clemson Univ., 1970).

  9. C. Harard, A. Faivre, and J. Lemaitre, J. European Ceram. Soc., 15, 135 (1995).

    Google Scholar 

  10. W. Huebner, S.A. Anderson, H.U. Anderson, and J. Brannon, in Ref. 7, p. 257.

  11. J.H. Adair, R.E. Chodelka, S.A. Costantino, and S. Vegnigalla, Elelectroceramic Device ManufacturingWorkshop, April 1–11, 1997, State College, PA.

    Google Scholar 

  12. D.V. Miller, J.H. Adair, and R.E. Newnham, Ceramic Trans., Vol. 1. Cermaic Powder Sci. IIB, G.L. Messing, E.R. Fuller, Jr., H. Hausner, eds., Am. Ceram. Soc., Westerville, OH, 1988, p. 493.

    Google Scholar 

  13. D.A. Anderson, J.H. Adair, D. Miller, J.V. Biggers, and T.R. Shrout, Ceramic Trans., Vol. 1. Cermaic Powder Sci. IIB, G.L. Messing, E.R. Fuller, Jr., H. Hausner, eds., Am. Ceram. Soc., Westerville, OH, 1988, p. 485.

    Google Scholar 

  14. C.C. Hung and R.E. Riman, in Chemical Processing of Adv. Materials, edited by L.L. Hench and J.K. West (Wiley Science, New York, 1992), p. 603.

    Google Scholar 

  15. Sadtler IR Spectra, No. 74989K, Y27K, Y28K, Y188K, Y249K, and 47558P (Sadtler Research Lab., Inc., Philadelphia, PA, 1976).

  16. K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds (John Wiley, New York, 1963).

    Google Scholar 

  17. Sadtler IR Spectra No. 74989K (Bio Rad Lab., Inc., Philadelphia, PA, 1988).

  18. L.H. Little, Infrared Spectra of Adsorbed Species (Academic Press, New York, 1966), p. 77.

    Google Scholar 

  19. P.J. Balaz, J. Briancin, Z. Bastl, L. Medvecky, and V. Sepelak, J. Mat. Sci. 29, 4847 (1994).

    Google Scholar 

  20. A.R. Mathiesen and J.V. McLaren, J. Polym. Sci., Part A: Polym. Chem., 3, 2555 (1965).

    Google Scholar 

  21. D.H. Lee, P.A. Condrate Sr., and J.S. Reed, in Ceramic Trans., Vol, 54, edited by J.H. Adair, J.A. Casey, C. Randall and S. Venigalla (Am. Ceram. Soc., Westerville, OH 1995), p. 67.

    Google Scholar 

  22. E.A. Bekturov and Z. Kh. Bakauova, Synthetic Water-Soluble Polymers in Solution (Huthig and Wepf Verlag, Heidelberg, Germany, 1986).

    Google Scholar 

  23. K.F. Tjipangandjara and P. Somasundaran, in Proc. of 2nd World Congress of Particle Techn., Effect of the conformation of polyacrylic acid on the dispersion-occulation of alumina and kaolinite fines (Kyoto, Japan, 1990).

  24. A. Fossy, A. Attar, and J.M. Lamarch, J. Colloid Interfac. Sci., 96, 275 (1983).

    Google Scholar 

  25. R.W. O'Brien, J. Fluid Mech., 190, 77 (1988).

    Google Scholar 

  26. R.W. O'Brien, W.N. Rowlands, and R.J. Hunter, in Ceramic Transaction Vol. 54, Characterization of ceramic materials using electroacoustics, edited by J.H. Adair. J.A. Casey, C.A. Randall, and S. Venigalla (Am. Ceramic Soc., Westerville, OH, 1995), p. 53.

    Google Scholar 

  27. D.W. Cannon, in Electroacoustic for Characterization of Particulate and Suspensions, NIST Pub. No. 856, edited by S.G. Malghan, (National Institute of Science & Technology, Gaithersburg, 1993), p. 40.

    Google Scholar 

  28. H. Polat, M. Polat, and S. Chander, in Electroacoustic for Characterization of Particulate and Suspensions, NIST Pub. No. 856, edited by S.G. Malghan, (National Institute of Science & Technology, Gaithersburg, 1993), p. 200.

    Google Scholar 

  29. U. Paik, J. Korean Phys. Soc., 32, S1224 (1998).

    Google Scholar 

  30. V. Hackley and S. Malghan, in Electroacoustic for Characterization of Particulate and Suspensions, NIST Pub. No. 856, edited by S.G. Malghan, (National Institute of Science & Technology, Gaithersburg, 1993), p. 161.

    Google Scholar 

  31. F.N. Desai, H.R. Hammad, and K.F. Hayes, in Electroacoustic for Characterization of Particulate and Suspensions, NIST Pub. No. 856, edited by S.G. Malghan, (National Institute of Science & Technology, Gaithersburg, 1993), p. 129.

    Google Scholar 

  32. Y.C. Huang, N.D. Sanders, F.M. Fowkes, and T.B. Lloyd, in Electroacoustic for Characterization of Particulate and Suspensions, NIST Pub. No. 856, edited by S.G. Malghan, (National Institute of Science & Technology, Gaithersburg, 1993), p. 180.

    Google Scholar 

  33. J.-H. Jean and H.-R. Wang, J. Am. Ceram. Soc., 81, 1589 (1998).

    Google Scholar 

  34. Z. Chen, T.A. Ring, and J. Lemaitre, J. Am. Ceram. Soc., 75, 3201 (1992).

    Google Scholar 

  35. A. Dutta, in Electroacoustic for Characterization of Particulate and Suspensions, NIST Pub. No. 856, edited by S.G. Malghan, (National Institute of Science & Technology, Gaithersburg, 1993), p. 274.

    Google Scholar 

  36. R.J. Hunter, Foundation of Colloid Science, Oxford Univ. Press, New York, 1987, p. 91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, B.I. Chemical Variations in Barium Titanate Powders and Dispersants. Journal of Electroceramics 3, 53–63 (1999). https://doi.org/10.1023/A:1009966900092

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009966900092

Navigation