Skip to main content
Log in

Doping Mechanism and Permittivity Correlations in Nd-Doped BaTiO3

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

BaTiO3 forms an extensive range of solid solutions with Nd2O3 by means of the double substitution mechanism: Ba + Ti ⇒ 2Nd, as shown by both a phase diagram study and Rietveld refinement using powder neutron diffraction data. The solid solutions have the general formula Ba1-xTi1-xNd2xO3Odxd0.12 at 1300°C and 1300°C and O dxd at 1400°C. With increasing x, the symmetry changes from tetragonal to cubic at x∼ 0.09. The sharp permittivity maximum at ∼127°C in stoichiometric BaTiO3 broadens very rapidly with increasing x and gradually moves to lower temperatures: this appears to be because, with substitution of Nd onto Ti sites, formation of the ferroelectric domains is increasingly difficult because of the presence of dipole-inactive Nd3+ ions on the Ti sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.D. Morrison, D.C. Sinclair, J.M.S. Skakle, and A.R. West, J. Am. Ceram. Soc., 81, 1957 (1998).

    Google Scholar 

  2. G.H. Jonker and E.E. Havinga, Mat. Res. Bull., 17, 345 (1982).

    Google Scholar 

  3. M. Kahn, J. Am. Ceram. Soc., 54, 455 (1971).

    Google Scholar 

  4. J.P. Bonsack, Am. Ceram. Soc. Bull., 50, 488 (1971).

    Google Scholar 

  5. K.S. Mazdiyasni and L.M. Borwn, J. Am. Ceram. Soc., 54, 539 (1971).

    Google Scholar 

  6. N.M. Molokhia, M.A.A. Issa, and S.A. Nasser, J. Am. Ceram. Soc., 67, 289 (1984).

    Google Scholar 

  7. K.S. Mazdiyasni, Am. Ceram. Soc. Bull., 63, 591 (1984).

    Google Scholar 

  8. P. Murugaraj, T.R.N. Kutty, and M.S. Rao, J. Mat. Sci., 21, 3521 (1986).

    Google Scholar 

  9. C. Zheng and A.R. West, Brit. Ceram. Proc., 49, 247 (1992).

    Google Scholar 

  10. T.R.N. Kutty and P. Murugaraj, J. Mat. Sci., 22, 3652 (1989).

    Google Scholar 

  11. A.S. Shaikh and R.W. Vest, J. Am. Ceram. Soc., 69, 689 (1986).

    Google Scholar 

  12. R.I. Smith and S. Hull, Report RAL-TR–97–038, Rutherford Appleton Laboratory (1997).

  13. W.I.F. David, R.M. Ibberson, and J.C. Mathewman, Report RAL–92–032, Rutherford Appleton Laboratory (1992).

  14. G. Goodman, J. Am. Ceram. Soc., 43, 105 (1960).

    Google Scholar 

  15. D. Barb, E. Barbulescu, and A. Barbulescu, Phys. Status. Solidi, 74a, 79 (1982).

    Google Scholar 

  16. D. Hennings, A. Schnell, and G. Simon, J. Am. Ceram. Soc., 65, 539 (1982).

    Google Scholar 

  17. H-Y. Lu, J-S. Bow, and W-H. Deng, J. Am. Ceram. Soc., 73, 3562 (1990).

    Google Scholar 

  18. K. Takada, E. Chang, and D.M. Smyth, Adv. in Ceramics, 19, 147 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirose, N., Skakle, J. & West, A. Doping Mechanism and Permittivity Correlations in Nd-Doped BaTiO3 . Journal of Electroceramics 3, 233–238 (1999). https://doi.org/10.1023/A:1009973300039

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009973300039

Navigation