Skip to main content
Log in

Effects of Cation Disorder on Oxygen Vacancy Migration in Gd2Ti2O7

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Atomistic simulations were used to calculate defect formation and migration energies for oxygen vacancies in the pyrochlore Gd2Ti2O7, with particular attention to the role of cation antisite disorder. Oxygen occupies two crystallographically distinct sites (48f and 8a) in the ordered material, but the 8b sites become partially occupied with disorder. Because cation and anion disorder are coupled, oxygen vacancy formation and migration energetics are sensitive to the configuration of the cation disorder. The VO8a vacancy and VO8a + O8bi Frenkel defects are energetically favored in the ordered material, but VO8a is favored at higher disorder. The VO8a + O8bi Frenkel is favored for some disorder configurations. Eight possible oxygen vacancy migration paths converge toward a unique migration energy as cation disorder increases, reflecting a reversion towards the fluorite structure. Oxygen vacancy migration is determined by O48f → O48f transitions along the shortest edges of the TiO6 octahedra. The transition V48a → V48f is also possible for low disorder, and can activate the V48f → V48f migration network by depositing vacancies there. The reverse transition may occur at very high disorder to retard ionic conduction, and is consistent with Frenkel defect stabilities. Local regions of ordered and disordered material both appear necessary to explain the observed trends in ionic conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Spears, S. Kramer, H.L. Tuller, and P.K. Moon, in Proc. 1st Int'l. Symp. on Ionic and Mixed Conducting Ceramics, edited by T.A. Ramanarayan and H.L. Tuller (Materials Research Society, Pittsburgh, 1991), p. 32.

    Google Scholar 

  2. P.K. Moon and H.L. Tuller, Sensors and Actuators, B1, 199 (1990).

    Google Scholar 

  3. W.J. Weber, et al., J. Mater. Res., 13, 1434 (1998).

    Google Scholar 

  4. H.L. Tuller, Solid State Ionics, 52, 135 (1992).

    Google Scholar 

  5. P.K. Moon and H.L. Tuller, in Solid State Ionics, Proc. Symp. 135, edited by G. Nazri, R.A. Huggins, D.F. Shriver (Materials Research Society, Pittsburgh, 1990), p. 149.

    Google Scholar 

  6. S.M. Haile, B.J. Wuensch, and E. Prince, in Neutron Scattering for Materials Science, Proc. Symp. 166, edited by S.M. Shapiro, S.C. Moss, J.D. Jorgensen (Materials Research Society, Pittsburgh, 1990), p. 81.

    Google Scholar 

  7. M.P. van Dijk, A.N. Cormack, A.J. Burgraaf, and C.R.A. Catlow, Solid State Ionics, 17, 159 (1985).

    Google Scholar 

  8. P.J. Wilde and C.R.A. Catlow, in Ionic and Mixed Conducting Ceramics, edited by T.A. Ramanarayanan and H.L. Tuller (Electrochem. Soc. Proceedings 91–12, 1991), p. 18.

  9. P.J. Wilde and C.R.A. Catlow, Solid State Ionics, 112, 173 (1998).

    Google Scholar 

  10. P.J. Wilde and C.R.A. Catlow, Solid State Ionics, 112, 185 (1998).

    Google Scholar 

  11. R.E. Williford, W.J. Weber, R. Devanathan, and J.D. Gale, in Materials Res. Symp. Proc. 538, Multiscale Modeling of Materials, (Materials Research Society, Pittsburgh, 1998), p. 235.

    Google Scholar 

  12. H. Nyman, S. Andersson, B.G. Hyde, and M. O'Keeffe, J. Sol. State Chem., 26, 123 (1978).

    Google Scholar 

  13. O. Knop, F. Brisse, and L. Castelliz, Can. J. Chem., 46(6), 971 (1969).

    Google Scholar 

  14. M.A. Subramanian and A.W. Sleight, in Handbook on the Physics and Chemistry of Rare Earths, 16, Chapter 107, edited by K.A. Gschneider and L. Eyring, (Elsevier Science Publ BV, Amsterdam, 1993), p. 225.

    Google Scholar 

  15. W.W. Barker, J. Graham, O. Knop, and F. Brisse, in The Chemistry of Extended Defects in Non-metallic Solids, Proceedings of Inst. for Adv. Study, edited by L.R. Eyring and M. O'Keeffe (North-Holland Publ., 1969), p. 198.

  16. G. Albanese, A. Deriu, J.E. Greedan, M.S. Seehra, K. Siratori, and H.P.J. Wijn, in Properties on Non-Metallic Inorganic Compounds Based on Transition Elements, Vol. 27 of Landolt-Borstein, Group III: Crystal and solid State Physics, edited by H.P.J. Wijn (Springer-Verlag, Heidelberg, 1992), p. 100.

    Google Scholar 

  17. N.T. Vandenborre, E. Husson, and H. Brusset, Spectrochem. Acta, 37A, 113 (1981).

    Google Scholar 

  18. M. Queslati, M. Balkanski, P.K. Moon, and H.L. Tuller, in Materials Res. Symp. Proc. 135, (Materials Research Society, Pittsburgh, 1989), p. 199.

    Google Scholar 

  19. J.D. Gale, J. Chem. Soc., Faraday Trans., 93, 629 (1997).

    Google Scholar 

  20. J.D. Gale, Phil. Mag. B, 73, 3 (1996).

    Google Scholar 

  21. N.F. Mott and M.J. Littleton, Trans. Faraday Soc., 34, 485 (1938).

    Google Scholar 

  22. W. Hayes and A.M. Stoneham, Defects and defect processes in nonmetallic solids (John Wiley & Sons, New York, 1985).

    Google Scholar 

  23. B.G. Dick and A.W. Overhauser, Phys. Rev., 112, 90 (1958).

    Google Scholar 

  24. T.S. Bush, J.D. Gale, C.R.A. Catlow, and P.D. Battle, J. Mater. Chem., 4, 831 (1994).

    Google Scholar 

  25. C.R.A. Catlow, Proc. Royal Soc. A, 333, 533 (1977).

    Google Scholar 

  26. P.W. Fowler, Molec. Simul., 4, 313 (1990).

    Google Scholar 

  27. G.V. Lewis and C.R.A. Catlow, J. Phys. C: Sol. State Phys., 18, 1149 (1985).

    Google Scholar 

  28. M.J.L. Sangster and A.M. Stoneham, Phil. Mag., 43, 597 (1980).

    Google Scholar 

  29. A. Dietrich, Molec. Simul., 11(5), 251 (1992).

    Google Scholar 

  30. L.H. Brixner, Inorganic Chem., 3, 1065 (1964).

    Google Scholar 

  31. P.W.M. Jacobs and E.A. Kotomin, Phil. Mag. A, 68, 695 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williford, R., Weber, W., Devanathan, R. et al. Effects of Cation Disorder on Oxygen Vacancy Migration in Gd2Ti2O7 . Journal of Electroceramics 3, 409–424 (1999). https://doi.org/10.1023/A:1009978200528

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009978200528

Navigation