Skip to main content
Log in

A Lagrangian Mixed Subgrid-Scale Model in Generalized Coordinates

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

This paper presents the formulation of a mixed dynamic subgrid-scale model in non-Cartesian geometries suitable for the study of complex flows. Following the approach developed by Jordan [J. Comput. Phys. 148, 322 (1999)], the variables are first transformed into a contravariant form and then filtered in the computational space. A dynamic localized mixed model, previously developed within the Cartesian framework has been entirely re-formulated for non-orthogonal meshes. The model performance was evaluated by carrying out two tests. First, a plane channel flow at Reτ = 395 was simulated using both Cartesian and curvilinear grids; the results show that the model formulation is consistent and insensitive to grid distortion, and compares well with the reference data. Then, computations of the turbulent flow over a two-dimensional channel with a wavy wall were performed. Accurate first- and second-order statistics were obtained using relatively coarse grids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bardina, J., Ferziger, J.H. and Reynolds, W.C., Improved subgrid scale models for large eddy simulation. AIAA paper No. 80–1357 (1980).

  2. Beaudan, P. and Moin, P., Numerical experiments on the flow past a circular cylinder at subcritical Reynolds numbers. Report No. TF-62, Stanford University (1994).

  3. Buckles, J., Turbulent separated flow over wavy surfaces. Ph.D. Dissertation, University of Illinois (1983).

  4. Buckles, J., Hanratty, T.J. and Adrian, R.J., Turbulent flow over large amplitude wavy surfaces. J. Fluid Mech. 140 (1984) 27–44.

    Article  ADS  Google Scholar 

  5. Calhoun, R.J., Numerical investigation of turbulent flow over complex terrain. Ph.D. Dissertation, Stanford University (1998).

  6. Choi, H., Moin, P. and Kim, J., Direct numerical simulation of turbulent flow over riblets. J. Fluid Mech. 255 (1993) 503–539.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Deardoff, J.W., A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 41 (1970) 453–480.

    Article  ADS  Google Scholar 

  8. De Angelis, V., Lombardi, P. and Banerjee, S., Direct numerical simulation of turbulent flow over a wavy wall. Phys. Fluids 9 (1997) 2429–2442.

    Article  ADS  Google Scholar 

  9. Fletcher C.A.J., Computational Techniques for Fluid Dynamics, Vol. II. Springer-Verlag, New York (1985).

    Google Scholar 

  10. Germano, M., The filtering approach. J. Fluid Mech. 238 (1992) 325–336.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Germano, M., Piomelli, U., Moin, P. and Cabot, W.H., A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3 (1991) 1760–1765.

    Article  MATH  ADS  Google Scholar 

  12. Ghosal, S. and Moin, P., The basic equations for the large eddy simulation of turbulent flows in complex geometry. J. Comput. Phys. 118 (1995) 24–37.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Henn, D.S. and Sykes, R.I., Large-eddy simulation of flow over wavy surfaces. J. Fluid Mech. 383 (1999) 75–112.

    Article  MATH  ADS  Google Scholar 

  14. Hudson, J.D., Dykhno, L. and Hanratty, T.J., Turbulence production in flow over a wavy wall. Exp. Fluids 20 (1996) 257–265.

    Article  Google Scholar 

  15. Jordan, S.A., A large-eddy simulation methodology for incompressible flows in complex domains. NUWC-NPT Technical Report 10592 (1996).

  16. Jordan, S.A., A large-eddy simulation methodology in generalized curvilinear coordinates. J. Comput. Phys. 148 (1999) 322–340.

    Article  MATH  ADS  Google Scholar 

  17. Jordan, S.A. and Ragab, S.A., A large-eddy simulation of the near wake of a circular cylinder. J. Fluid Engrg. 120 (1998) 243–252.

    Google Scholar 

  18. Kravchenko, A., Moin, P. and Moser R.D., Zonal embedded grids for numerical simulations of wall-bounded turbulent flows. J. Comput. Phys. 127 (1996) 412–423.

    Article  MATH  ADS  Google Scholar 

  19. Kravchenko, A. and Moin, P., Numerical studies of flow over a circular cylinder at ReD = 3900. Phys. Fluids 12 (2000) 403–417.

    Article  ADS  MATH  Google Scholar 

  20. Kim, J., Moin, P. and Moser, R.D., Turbulent statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177 (1987) 133–166.

    Article  MATH  ADS  Google Scholar 

  21. Krettenauer, K. and Schumann, U., Numerical simulation of turbulent convection over wavy terrain. J. Fluid Mech. 237 (1992) 261–299.

    Article  ADS  Google Scholar 

  22. Lilly, D.K., A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A 4 (1992) 633–635.

    Article  ADS  Google Scholar 

  23. Liu, S., Meneveau, C. and Katz, J., On the properties of similarity SGSmodels as deduced from measurements in a turbulent jet. J. Fluid Mech. 275 (1994) 83–119.

    Article  ADS  Google Scholar 

  24. Lund, T.S. and Moin, P., Large-eddy simulation of a concave wall boundary layer. Internat. J. Heat Fluid Flow 17 (1996) 290–295.

    Article  Google Scholar 

  25. Lund, T.S., On the use of discrete filters for large eddy simulations. In: Center for Turbulence Research Annual Briefs 1997. Stanford University (1997) pp. 83–95.

  26. Lund, T.S. and Kaltenbach H.-J., Experiments with explicit filtering for LES using a finitedifference method. In: Center for Turbulence Research Annual Briefs 1995. Stanford University (1995) pp. 91–105.

  27. Maas, C. and Schumann, U., Direct numerical simulation of separated turbulent flow over a wavy boundary. In: Hirschel, E.H. (ed.), Flow Simulation with High Performance Computers, II. Notes on Numerical Fluid Dynamics, Vol. 52 (1996) pp. 227–241.

  28. Meneveau, C., Lund, T.S. and Cabot, W.H., A Lagrangian dynamic subgrid-scale model of turbulence. J. Fluid Mech., 319 (1996) 353–385.

    Article  MATH  ADS  Google Scholar 

  29. Mittal, R. and Moin, P., Suitability of upwind-biased finite difference schemes for Large-Eddy simulation of turbulent flows. AIAA J. 35 (1997) 1415–1417.

    MATH  Google Scholar 

  30. Morinishi, Y., Lund, T.S., Vasilyev, O.V. and Moin, P., Fully conservative higher order finite difference schemes for incompressible flow. J. Comput. Phys. 143 (1998) 90–124.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Moser, R.D., Kim, J. and Mansour, N.M., Direct numerical simulation of turbulent channel flow up to Reτ = 590. Phys. Fluids 11 (1999) 943–945.

    Article  ADS  MATH  Google Scholar 

  32. Smagorinsky, J., General circulation experiments with the primitive equations. I. The basic experiment. Monthly Weather Rev.(1963) 91–99.

  33. Thompson, J.F., Warsi, A. and Mastin, C.W. Numerical Grid Generation. Elsevier Science, New York (1985).

    MATH  Google Scholar 

  34. Salvetti, M.V. and Banerjee S., A priori tests of a new dynamic subgrid-scale model for finitedifference large-eddy simulation. Phys. Fluids 7 (1995) 2831–2847.

    Article  MATH  ADS  Google Scholar 

  35. Sarghini, F., Piomelli, U. and Balaras, E., Scale similar models for Large-eddy simulations. Phys. Fluids 11 (1999) 1596–1607.

    Article  ADS  MATH  Google Scholar 

  36. Vasilyev, O.V. and Lund, T.S., A general theory of discrete filtering for LES in complex geometry. In: Center for Turbulence Research Annual Briefs 1997Stanford University (1997) pp. 67–82.

  37. Vreman, B., Geurts, B. and Kuerten, H.,On the formulation of the dynamic mixed subgrid-scale model. Phys. Fluids 6 (1994) 4057–4059.

    Article  MATH  ADS  Google Scholar 

  38. Wu, X. and Squires, K.D., Numerical investigation of the turbulent boundary layer over a bump. J. Fluid Mech. 362 (1998) 229–271.

    Article  MATH  ADS  Google Scholar 

  39. Wu, X. and Squires, K.D., Large eddy simulation of an equilibrium three-dimensional turbulent boundary layer. AIAA J. 35 (1997) 67–74.

    MATH  Google Scholar 

  40. Wu, X. and Squires, K.D., Prediction of the three-dimensional turbulent boundary layer over a swept bump. AIAA J. 36 (1998) 505–514.

    Article  ADS  Google Scholar 

  41. Zang, Y., Street, R.L. and Koseff, J., A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys. Fluids A 5 (1993) 3186–3196.

    Article  ADS  Google Scholar 

  42. Zang, Y., Street, R.L. and Koseff, J., A non-staggered grid, fractional step method for the time-dependent incompressible Navier-Stokes equation in curvilinear coordinates. J. Comput. Phys. 114 (1994) 18–33.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  43. Zang, Y. and Street, R.L., Numerical simulation of coastal upwelling and interfacial instability of a rotating and stratified fluid. J. Fluid Mech. 305 (1995) 47–75.

    Article  MATH  ADS  Google Scholar 

  44. Zilker, D.P., Cook, G.W. and Hanratty T.J., Influence of the amplitude of a solid wavy wall on a turbulent flow. Part 1. Non-separated flows. J. Fluid Mech. 82 (1977) 29–51.

    Article  ADS  Google Scholar 

  45. Zilker, D.P. and Hanratty, T.J., Influence of the amplitude of a solid wavy wall on a turbulent flow. Part 2. Separated flows. J. Fluid Mech. 90 (1979) 257–271.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armenio, V., Piomelli, U. A Lagrangian Mixed Subgrid-Scale Model in Generalized Coordinates. Flow, Turbulence and Combustion 65, 51–81 (2000). https://doi.org/10.1023/A:1009998919233

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009998919233

Navigation