Skip to main content
Log in

Prediction of Spherule Size in Gas Phase Nanoparticle Synthesis

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Surprisingly, there is still no rational yet practical method to reliably predict absolute ‘primary’ nanospherule sizes and, hence, specific surface areas, in gas phase flame nanoparticle synthesis. The present paper summarizes our approach to this important problem, using a plausible and tractable coagulation–coalescence (two-rate process) model, but with an important modification to the rate of nanoparticle coalescence. The Smoluchowski equation is used to describe the particle Brownian coagulation rate process (free-molecule regime), together with the assumption that the particle population follows a self-preserving size distribution. The decisive coalescence process, driven by the minimization of surface energy of the coalescing nanoparticles, is presumed to occur via the mechanism of surface diffusion. However, a curvature-dependent energy barrier for surface-diffusion is proposed, taking into account the extended ‘surface-melting’ behavior of nanoparticles. This is shown here to have the effect of accelerating the coalescence rate of touching nanoparticles, leading to absolute sizes (at the predicted onset of aggregate formation) in encouraging agreement with available experiments. It was found that the coalescence rate, especially with a curvature-augmented surface diffusivity, is far more sensitive to particle size than is the Brownian coagulation rate. As a result, when cast in terms of characteristic process times, a distinct crossover generally exists, allowing the determination of observed ‘primary’ spherule sizes within larger aggregates. This approach is successfully applied here to several published synthesis examples of vapor-derived nanosized alumina and titania. Its broader implications for nanoparticle synthesis in non-isothermal reactors, including our own counterflow diffusion flame reactor, are also briefly summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhtar M.K., S.E. Pratsinis & S.V.R. Mastrangelo, 1992. J. Am. Ceram. Soc. 75, 3408.

    Google Scholar 

  • Astier M. & P. Vergnon, 1976. J. Solid State Chem. 19, 67.

    Google Scholar 

  • Berry R.S., 1997. Microscale Thermophysical Eng. 1, 1.

    Google Scholar 

  • Bonevich J.E. & L.D. Marks, 1992. J. Mater. Res. 7, 1489.

    Google Scholar 

  • Broughton J.Q. & G.H. Glimer, 1983. J. Chem. Phys. 79, 5119.

    Google Scholar 

  • Chase M.W., 1986. ‘JANAF Thermochemical Tables’, 3rd ed., ACS and AIP.

  • Chessac P., R. Kofman, R. Garrigos, 1988. Phys. Scr. 38, 164.

    Google Scholar 

  • Chung S.L. & J.L. Katz, 1985. Combust. Flame 61, 271.

    Google Scholar 

  • Coblenz W.S., J.M. Dynys, R.M. Cannon & R.L. Coble 1980. Mater. Sci. Res. 13, 141.

    Google Scholar 

  • Couchman P.R. & W.A. Jesser, 1977. Nature 269, 481.

    Google Scholar 

  • Flagan R.C. & M.M. Lunden, 1995. Mater. Sci. Eng. A204, 113.

    Google Scholar 

  • Friedlander S.K., 1977. ‘Smoke, Dust and Haze’, Wiley, New York.

    Google Scholar 

  • Gomez A. & D.E. Rosner, 1993. Combust. Sci. Tech. 89, 335.

    Google Scholar 

  • Helble J.J. & A.F. Sarofim, 1989. J. Colloid Interface Sci. 128, 348.

    Google Scholar 

  • Huang Y.K., A.A. Menovsky & F.R. de Boer, 1991. Z. Phys. D20, 293.

    Google Scholar 

  • Ichinose N., Y. Ozaki & S. Kashu, 1992. ‘Superfine Particle Technology’, Springer-Verlag, London.

    Google Scholar 

  • Koch W. & S.K. Friedlander, 1990a, J. Colloid Interface Sci. 140, 419.

    Google Scholar 

  • Koch W. & S.K. Friedlander, 1990b, J. Aerosol Sci. 21, S73.

    Google Scholar 

  • Kofman R., P. Cheyssac, A. Aouaj, Y. Lereah, G. Deutscher, T. Ben-David, J.M. Penisson & A. Bourret, 1994. Surf. Sci. 303, 231.

    Google Scholar 

  • Kruis F.E., K.A. Kusters & S.E. Pratsinis, 1993, Aerosol Sci. Tech. 19, 514.

    Google Scholar 

  • Kusunoki M., K. Yonimitsu, Y. Sasaki & Y. Kubo, 1993, J. Am. Ceram. Soc. 76, 763.

    Google Scholar 

  • Lai F.S., S.K. Friedlander, J. Pich & G.M. Hidy, 1972. J. Colloid Interface Sci. 39, 395.

    Google Scholar 

  • Lehtinen K.E.J., R.S. Windeler & S.K. Friedlander, 1996a. J. Aerosol Sci. 27, 883.

    Google Scholar 

  • Lehtinen K.E.J., R.S. Windeler & S.K. Friedlander, 1996b. J. Colloid Interface Sci. 182, 606.

    Google Scholar 

  • Lowen H., 1994. Phys. Rep. 237, 249.

    Google Scholar 

  • Machlin E.S., 1991. An Introduction to Thermodynamics and Kinetics Relevant to Materials Science. Giro Press, Croton-On-Hudson.

    Google Scholar 

  • Mackrodt W.C., 1992. Phil. Trans. Roy. Soc. Lond. A341, 301.

    Google Scholar 

  • Matsoukas T. & S.K. Friedlander, 1991. J. Colloid Interface Sci. 146, 495.

    Google Scholar 

  • Okuyama K., J.-T. Jeung, Y. Kousaka, H.V. Nguyen, J.J. Wu & R.C. Flagan, 1989. Chem. Eng. Sci. 44, 1369.

    Google Scholar 

  • Oliver P.M., G.W. Watson, E.T. Kelsey & S.C. Parker, 1997. J. Mater. Chem. 7, 563.

    Google Scholar 

  • Pluis B., D. Frenkel & J.F. van derVeen, 1990. Surf. Sci. 239, 282.

    Google Scholar 

  • Pratsinis S.E., 1998. Prog. Energy Combust. Sci. 24, 197.

    Google Scholar 

  • Pratsinis S.E., 1988. J. Colloid Interface Sci. 124, 416.

    Google Scholar 

  • Pratsinis S.E. & P.T. Spicer, 1998. Chem. Eng. Sci. (in press).

  • Rosner D.E., 1986. Transport Processes in Chemically Reacting Flow Systems. Butterworths, Boston. Dover ed. (paperback) in press, 1999.

  • Rosner, D.E. & S. Yu, 1999. 'Monte-Carlo simulation of freemolecule regime Brownian aggregation and simultaneous spheroidization? AIChE J. (submitted May 1999).

  • Rulison A.J., P.F. Miquel & J.L. Katz, 1996. J. Mater. Res. 11, 3083.

    Google Scholar 

  • Samsonov G.V., 1982. The Oxide Handbook, IFI/Plenum, New York.

    Google Scholar 

  • Seebauer E.G. & C.E. Allen, 1995. Prog. Surf. Sci. 49, 265.

    Google Scholar 

  • Seto T., M. Shimada & K. Okuyama, 1995. Aerosol Sci. Tech. 23, 183.

    Google Scholar 

  • Somorjai G.A., 1994. Introduction to Surface Chemistry and Catalysis, Wiley, New York.

    Google Scholar 

  • Tandon P. & D.E. Rosner, 1996. Chem. Eng. Comm. 151, 147.

    Google Scholar 

  • Tandon P. & D.E. Rosner, 1995. Ind. Eng. Chem. Res. 34, 3265.

    Google Scholar 

  • Tandon P. & D.E. Rosner, 1999. J. Colloid Interface Sci. 213, 273–286.

    Google Scholar 

  • Ulrich G.D., 1971. Combust. Sci. Tech. 44, 7.

    Google Scholar 

  • Ulrich G.D. & N.S. Subramanian, 1977. Combust. Sci. Tech. 17, 119.

    Google Scholar 

  • Van de Veen J.F., B. Pluis & A.W.D. Van de Gon, 1988. In Vanselow, R. and Howe, R.F., eds. Chemistry and Physics of Solid Surfaces VII. Springer, New York.

    Google Scholar 

  • Vemury S. & S.E. Pratsinis, 1995. J. Aerosol Sci. 26, 175.

    Google Scholar 

  • Wu M.K., R.S. Windler, C.K. Steiner, T. Boris, & S.K. Friedlander, 1993. Aerosol Sci. Tech. 19, 527.

    Google Scholar 

  • Wu M.K. & S.K. Friedlander, 1993. J. Aerosol Sci. 24, 273.

    Google Scholar 

  • Xing Y., U.O. Koylu & D.E. Rosner, 1996. Combust. Flame 107, 85.

    Google Scholar 

  • Xing Y., 1997. Synthesis and morphological evolution of metal oxide nanoparticles in flames, Ph.D. Thesis, Yale University.

  • Xing Y. & D.E. Rosner, 1997. MRS Symp. Proc. 457, 167.

    Google Scholar 

  • Xing Y., U.O. Koylu & D.E. Rosner, 1999. Appl. Optics 38, 2686.

    Google Scholar 

  • Xiong Y. & S.E. Pratsinis, 1993. J. Aerosol Sci. 24, 283.

    Google Scholar 

  • Zachariah M.R. & H.G. Semerjian, 1989. AIChE J. 35, 2003.

    Google Scholar 

  • Zachariah M.R. & M.J. Carrier, 1994.MRSSymp. Proc. 351, 343.

    Google Scholar 

  • Zhu W. & S.E. Pratsinis, 1996. In Chow, G.-M. and Gonsalves, K.E., eds. Nanotechnology: Molecular Designed Materials. ACS, Washington.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel E. Rosner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, Y., Rosner, D.E. Prediction of Spherule Size in Gas Phase Nanoparticle Synthesis. Journal of Nanoparticle Research 1, 277–291 (1999). https://doi.org/10.1023/A:1010021004233

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010021004233

Navigation