Skip to main content
Log in

Dynamic Light Scattering Measurement of Nanometer Particles in Liquids

  • Editorial Commentary
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Dynamic light scattering (DLS) techniques for studying sizes and shapes of nanoparticles in liquids are reviewed. In photon correlation spectroscopy (PCS), the time fluctuations in the intensity of light scattered by the particle dispersion are monitored. For dilute dispersions of spherical nanoparticles, the decay rate of the time autocorrelation function of these intensity fluctuations is used to directly measure the particle translational diffusion coefficient, which is in turn related to the particle hydrodynamic radius. For a spherical particle, the hydrodynamic radius is essentially the same as the geometric particle radius (including any possible solvation layers). PCS is one of the most commonly used methods for measuring radii of submicron size particles in liquid dispersions. Depolarized Fabry-Perot interferometry (FPI) is a less common dynamic light scattering technique that is applicable to optically anisotropic nanoparticles. In FPI the frequency broadening of laser light scattered by the particles is analyzed. This broadening is proportional to the particle rotational diffusion coefficient, which is in turn related to the particle dimensions. The translational diffusion coefficient measured by PCS and the rotational diffusion coefficient measured by depolarized FPI may be combined to obtain the dimensions of non-spherical particles. DLS studies of liquid dispersions of nanometer-sized oligonucleotides in a water-based buffer are used as examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Aragon S.R. & R. Pecora, 1975. Biopolymers 14, 119.

    Google Scholar 

  • Banachowicz E., J. Gapinski & A. Patkowski, 2000. Biophys. J. 78, 70.

    Google Scholar 

  • Berne B.J. & R. Pecora, 2000. Dynamic Light Scattering. Dover Publications, New York.

    Google Scholar 

  • Broersma S., 1960. J. Chem. Phys. 32, 1626, 1632; ibid. 1980. 74, 6889.

    Google Scholar 

  • Brown W., ed., 1993. Dynamic Light Scattering: The Method and Some Applications. Clarendon Press, Oxford.

    Google Scholar 

  • Bu Z., P.S. Russo, D.L. Tipton & I.I. Negulescu, 1994. Macromolecules 27, 6871.

    Google Scholar 

  • Byron O., 1997. Biophys. J. 72, 408.

    Google Scholar 

  • Camins B. & P.S. Russo, 1994. Langmuir 10, 4053.

    Google Scholar 

  • Chu B., 1991. Laser Light Scattering, 2nd edn. Academic Press, New York.

    Google Scholar 

  • Chu B. & T. Liu, 2000. J. Nanopart. Res. 2, 29.

    Google Scholar 

  • Dierker S. et al., 1995. Phys. Rev. Lett. 75, 449.

    Google Scholar 

  • Durian D.J., D.A. Weitz & D.J. Pine, 1991. Science 252, 686.

    Google Scholar 

  • Eden D. & J.G. Elias, 1983. In: B.E. Dahneke, ed. Measurement of Suspended Particles by Quasi-Elastic Light Scattering. Wiley-Interscience, New York.

    Google Scholar 

  • Eimer W. & R. Pecora, 1991. J. Chem. Phys. 94, 2324.

    Google Scholar 

  • Eimer W. & Th. Dorfmüller, 1992. J. Phys. Chem. 96, 6790.

    Google Scholar 

  • Eimer W., M. Niermann, M.A. Eppe & B.M. Jockusch, 1993. J. Mol. Biol. 229, 146.

    Google Scholar 

  • Flamberg A. & R. Pecora, 1984. J. Phys. Chem. 88, 3026.

    Google Scholar 

  • Garcia de la Torre J., M.C. Lopez Martinez & M.M. Tirado, 1984. Biopolymers 23, 611.

    Google Scholar 

  • Garcia de la Torre J. & V. Bloomfield, 1981. Q. Rev. Biophys. 14, 81.

    Google Scholar 

  • Garcia de la Torre J., S. Navarro & M.C. Lopez-Martinez, 1994. Biophys. J. 66, 1573.

    Google Scholar 

  • Garcia de la Torre J. & J. Rodes, 1983. J. Chem. Phys. 79, 2454.

    Google Scholar 

  • Graf C., W. Schaertl, M. Maskos & M. Schmidt, 2000. J. Chem. Phys. 112, 3031.

    Google Scholar 

  • Haber-Pohlmeier S. & W. Eimer, 1993. J. Phys. Chem. 97, 3095.

    Google Scholar 

  • Hellweg T., W. Eimer, E. Krahn, K. Schneider & A. Müller, 1997. Biochem. Biophys. Acta. 337, 311.

    Google Scholar 

  • Kaszuba M., 1999. J. Nanopart. Res. 1, 405.

    Google Scholar 

  • Lakowicz J.R., 1983. Principles of Fluorescence Spectroscopy. Plenum, New York.

    Google Scholar 

  • Liu H., L. Skibinska, J. Gapinski, A. Patkowski, E.W. Fischer & R. Pecora, 1998. J. Chem. Phys. 109, 7556.

    Google Scholar 

  • Michielsen S. & R. Pecora, 1981. Biochemistry 20, 6994.

    Google Scholar 

  • Overbeck E. & Chr. Sinn, 1999. J. Mod. Optics 46, 303.

    Google Scholar 

  • Patkowski A., W. Eimer & Th. Dorfmüller, 1990. Biopolymers 30, 93.

    Google Scholar 

  • Patkowski A., W. Eimer, J. Seils, G. Schneider, B.M. Jockusch & Th. Dorfmüller, 1991. Biopolymers, 30, 1281.

    Google Scholar 

  • Pecora R., ed., 1985. Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy. Plenum, New York.

    Google Scholar 

  • Perrin F., 1934. J. Phys. Rad. 5, 497; ibid. 1936. 7, 1.

    Google Scholar 

  • Piazza R. & V. Gegiorgio, 1992. Physica A 182, 576.

    Google Scholar 

  • Piazza R., J. Stavans, T. Bellini & V. Degiorgio, 1989. Opt. Commun. 73, 263.

    Google Scholar 

  • Provencher S.W., 1982. Comput. Phys. Comm. 27, 213, 239.

    Google Scholar 

  • Pusey P.N., R.J.A. Tough, 1985. In: R. Pecora, ed. Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy. Plenum, New York.

    Google Scholar 

  • Righini R., 1993. Science 262, 1386.

    Google Scholar 

  • Schmitz K.S., 1990. An Introduction to Dynamic Light Scattering by Macromolecules. Academic Press, San Diego.

    Google Scholar 

  • Schrof W., J. Klingler, W. Heckmann & D. Horn, 1998. Colloid. Polym. Sci. 276, 577.

    Google Scholar 

  • Skibinska L., H. Liu, J. Gapinski, A. Patkowski, E.W. Fischer & R. Pecora, 1999. J. Chem. Phys. 110, 1794.

    Google Scholar 

  • Startchev K., J. Zhang & C. Buffle, 1998. J. Coll. Interface Sci. 12.203, 189.

    Google Scholar 

  • Teller D.C., E. Swanson & C. de Haen, 1979. Adv. Enzymol. 61, 103.

    Google Scholar 

  • Thurn-Albrecht T. et al., 1999. Phys. Rev. E 59, 642.

    Google Scholar 

  • Tirado M.M. & J. Garcia de la Torre, 1979. J. Chem. Phys. 71, 2581; ibid. 1980. 73, 1986.

    Google Scholar 

  • Tirado M.M., M.C. Lopez Martinez & J. Garcia de la Torre, 1984. J. Chem. Phys. 81, 2047.

    Google Scholar 

  • Venable R.M. & R.W. Pastor, 1988. Biopolymers 27, 1001.

    Google Scholar 

  • Vo-Dinh T., G.D. Griffin, J.P. Alarie, B. Cullum, B. Sumpter & D. Noid, 2000. J. Nanopart. Res. 2, 17.

    Google Scholar 

  • Ware B.R., D. Cyr, S. Gorti & F. Lanni, 1983. In: B.E. Dahneke, ed. Measurement of Suspended Particles by Quasi-Elastic Light Scattering. Wiley-Interscience, New York.

    Google Scholar 

  • Wiese H. & D. Horn, 1991. J. Chem. Phys. 94, 6329.

    Google Scholar 

  • Zero K.M. & R. Pecora, 1982. Macromolecules 15, 87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pecora, R. Dynamic Light Scattering Measurement of Nanometer Particles in Liquids. Journal of Nanoparticle Research 2, 123–131 (2000). https://doi.org/10.1023/A:1010067107182

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010067107182

Navigation