Skip to main content
Log in

Conservation genetics of the endangered conifer Fitzroya cupressoides in Chile and Argentina

  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Intraspecific patterns of genetic variation can often be used toidentify biogeographic divisions which can be especially useful in thedesign of conservation strategies. Although abundant empirical evidenceexist on the genetic characteristics of plant species from the NorthernHemisphere as well as tropical endangered taxa, this information isparticularly limited on threatened species from endemism-rich areas inthe southern Andes of Argentina and Chile. The objective of the currentstudy was to analyze the levels and distribution of the isozymevariation in Fitzroya cupressoides (Mol.) Johnst.(Cupressaceae), a rare conifer restricted to temperate rainforests ofnorthern Patagonia, and to evaluate the role of current conservationareas protecting the gene pool of this valuable long-lived conifer.Sampling schedules consisted of fresh foliage collected from 30 randomlyselected trees at each of 24 different populations located along thegeographic range of the species. Extraction of enzymes followed standardprocedures and homogenates were loaded in 12% starch gels whichwere analyzed by horizontal electrophoresis. Eleven enzyme systems wereresolved using a combination of four different buffer solutions whichyielded information on 21 putative loci, 52% of them werepolymorphic in at least one population. Relatively low levels ofwithin-population genetic variability were scored in Fitzroyapopulations which were approximately half of the typical levelspublished for gymnosperms (percent of polymorphic loci, P = 23 vs.53% and expected heterozygosity, HE = 0.077 vs. 0.155for Fitzroya and other conifers respectively). Substantialbetween-population variation was detected, and certain individualpopulations stand out as much more genetically variable than nearbypopulations, which in turn are located outside protected areas. Ourfindings suggest that if the objective is to protect key species likeFitzroya, spatially explicit genetic information can be auseful tool to attain this goal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allnutt TR, Newton AC, Lara A, Premoli AC, Armesto JJ, Vergara R, Gardner M (1999) Genetic variation in Fitzroya cupressoides (alerce) a threatened South America conifer. Mol. Ecol., 8, 975–987.

    PubMed  Google Scholar 

  • Armesto JJ, Rozzi R, Smith-Ramírez C, Arroyo MT (1999) Conservation targets in South American temperate forests. Science, 282, 127–128.

    Google Scholar 

  • Convention on International Trade in Endangered Species of Wild Fauna and Flora (1984) Publication 50 CFR 23.23. Department of the Interior, U.S. Fish and Wildlife Service.

  • Cool LG, Power AB, Zavarin E (1991) Variability of foliage terpenes of Fitzroya cupressoides. Biochem. Sys. Ecol., 19, 421–432.

    Google Scholar 

  • Corporación Nacional Forestal (1974) Legislación Forestal. Corporación Nacional Forestal, Santiago, Chile.

    Google Scholar 

  • De Azkue D (1982) Los cromosomas de Pilgerodendron uviferum (Don) Flor. Darwiniana, 24, 19–22.

    Google Scholar 

  • Donoso C, Sandoval V, Grez R, Rodríguez J (1993) Dynamics of Fitzroya cupressoides forests in southern Chile. J. Veg. Sci., 4, 303–312.

    Google Scholar 

  • Falk DA, Holsinger KE (1991) Genetics and Conservation of Rare Plants. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Farjon A, Page CN, Schellevis N (1993) A preliminary world list of threatened conifer species. Biodiv. Cons., 2, 304–326.

    Google Scholar 

  • Ferreyra LI, Latino A, Calderón A, Cardenal CN (1996) Allozyme polymorphism in Austrocedrus chilensis (D. Don) Florin et Boutelje from Patagonia, Argentina. Silvae Genet., 45, 61–64.

    Google Scholar 

  • Frankel OH, Soulé ME (1981) Conservation and Evolution. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Fraver S, Gonzalez ME, Silla F, Lara A (1999) Composition and structure of remnant Fitzroya cupressoides forests of southern Chile's Central Depression. J. Torr. Bot. Soc., 126, 49–57.

    Google Scholar 

  • Fundación Vida Silvestre (1999) Mapeo de la Eco-Región de los Bosques Valdivianos. Boletín Técnico, 51. Buenos Aires.

  • Hair, JB (1968) The chromosomes of the Cupressaceae. 1. Tetraclineae and Actinostrobeae (Callitroideae). N. Z. J. Bot., 6, 277–284.

    Google Scholar 

  • Hamrick JL, Godt MJW(1989) Allozyme diversity in plant species. In: Plant Population Genetics, Breeding, and Genetic Resources (eds. Brown AHD, Clegg MT, Kahler AL, Weir BS), pp. 43–63. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Hamrick JL, Godt MJW (1996) Conservation genetics of endemic plant species. In: Conservation Genetics, Case Histories from Nature (eds. Avise JC, Hamrick JL), pp. 281–304. Chapman & Hall, New York.

    Google Scholar 

  • Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New Forest, 6, 95–124.

    Google Scholar 

  • Hogbin PM, Peakall R (1999) Evaluation of the contribution of genetic research to the management of the endangered plant Zieria prostrata. Cons. Biol., 13, 514–522.

    Google Scholar 

  • Hunziker JH (1961) Estudios cromosómicos en Cupresus y Libocedrus (Cupressaceae). Rev. Invest. Agríc., 15, 169–185.

    Google Scholar 

  • IFS, International Foundation for Science (1998) Recent Advances in biotechnology for tree conservation and Management, Proceedings of an International Workshop. Universidade Federal de Santa Catarina. Florianópolis, Santa Catarina, Brasil.

    Google Scholar 

  • IUCN (1994) Red List Categories, IUCN Species Survival Commission. IUCN, Gland, Switzerland.

    Google Scholar 

  • Kalela EK (1941) Ñber die Holzarten und die durch die klimatischen Verhältnisse verursachten Holzartenwechsel in den Wäldern Ostpatagoniens. Annales Academiae Scientarium Fennicae, Series A, 2, 5–151.

    Google Scholar 

  • King JN, Dancik BP (1983) Inheritance and linkage of isozymes in white spruce (Picea glauca). Can. J. Genet.Cytol., 5, 430–436.

    Google Scholar 

  • Kitzberger T, Pérez A, Iglesias G, Premoli AC, Veblen TT. Distribución y estado de conservación del alerce [Fitzroya cupressoides (Mol. Johnst)] en Argentina. Bosque, in press.

  • Lande R (1988) Genetics and demography in biological conservation. Science, 241, 1455–1460.

    PubMed  Google Scholar 

  • Lara A (1991) The Dynamics and Disturbance Regimes of Fitzroya Cupressoides Forests in the South-central Andes of Chile. PhD thesis, University of Colorado, Boulder, USA.

    Google Scholar 

  • Lara A, Veblen TT (1993) Forest plantations in Chile: A successful model? In: Afforestation Policies, Planing, and Progress (ed. Mather A), pp. 118–139. Belhaven Press, London.

    Google Scholar 

  • Lara A, Villalba R (1993) A 3620–year temperatyre record from Fitzroya cupressoides tree rings in southern South America. Science, 260, 1104–1106.

    Google Scholar 

  • Lara A, Donoso PJ, Cortés M (1991) Development of Conservation and Management Alternatives for Native Forest in South-central Chile. Final Report Project 3181 WWF-US/CODEF, Santiago, Chile.

  • Lara A, Donoso C, Aravena JC (1996) La conservación del bosque nativo en Chile: problemas y desafíos. In: Ecología de los bosques nativos de Chile (eds. Armesto JJ, Villagrán C, Arroyo MK), pp. 335–362. Editorial Universitaria, Santiago, Chile.

    Google Scholar 

  • Lara A, Fraver S, Aravena JC, Wolodarsky-Franke A (1999) Fire and the dynamics of Fitzroya cupressoides (alerce) forests of Chile's Cordillera Pelada. Ecoscience, 6, 100–109.

    Google Scholar 

  • Mace GM, Smith TB, Bruford MW, Wayne RK (1996) An overview of the issues. In: Molecular Genetic Approaches in Conservation (eds. Smith TB, Wayne RK), pp. 3–24. Oxford University Press, New York.

    Google Scholar 

  • Ministerio de Agricultura (1976) Decreto Supremo 490 que declara Monumento Natural al Alerce. Santiago, Chile.

  • Mitton JB, Linhart YB, Sturgeon KB, Hamrick JL (1979) Allozyme polymorphisms detected in mature needle tissue of ponderosa pine. J. Heredity, 70, 86–89.

    Google Scholar 

  • Murphy RW, Sites Jr. JW, Buth DG, Haufler CH (1996) Proteins: Isozyme electrophoresis. In: Molecular Systematics (eds. Hillis DM, Moritz C, Mable BK), pp. 51–120. Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. USA, 70, 3321–3323.

    Google Scholar 

  • O'Malley DM, Allendorf FW, Blake GM (1979) Inheritance of isozyme variation and heterozygosity in Pinus ponderosa. Biochem. Genet., 17, 233–250.

    PubMed  Google Scholar 

  • Pastorino MJ, Gallo LA (1998) Inheritance of isozyme variants in Austrocedrus chilensis (D. Don) Florin et Boutelje. Silvae Genet., 47, 15–20.

    Google Scholar 

  • Poulik MD (1957) Starch gel electrophoresis in a discontinuous system of buffers. Nature (London), 180, 1477–1479.

    Google Scholar 

  • Premoli AC (1998) The use of genetic markers to conserve endangered species and to design protected areas of more widespread species. In: Proceedings of an International Workshop: Recent Advances in Biotechnology for Tree Conservation and Management (ed. International Foundation for Science), pp. 157–171. Universidade Federal de Santa Catarina, Santa Catarina, Brasil.

    Google Scholar 

  • Premoli AC, Kitzberger TT, Veblen TT. Isozyme variation and recent biogeographical history of the long-lived conifer Fitzroya cupressoides. J. Biogeogr., in press.

  • Ranker TA, Haufler CH, Soltis PS, Soltis DE (1989) Genetic evidence for allopolyploidy in the neotropical fern Hemionitis (Adiantaceae) and the reconstruction of an ancestral genome. Sys. Bot., 14, 439–447.

    Google Scholar 

  • Ricci M, Eaton L (1997) Do all existing Sophora toromiro descend from one individual? Biodiv. Cons., 6, 1697–1702.

    Google Scholar 

  • Rieseberg LH, Zona S, Aberbom L, Martin TD (1989) Hybridization in the island endemic, Catalina Mahogany. Cons. Biol., 3, 52–58.

    Google Scholar 

  • Rojas M (1992) The species problem and conservation: what are we protecting? Cons. Biol., 6, 170–178.

    Google Scholar 

  • Schemske DW, Husband BC, Ruckelhaus MH, Goowillie C, Parker IM, Sishop JG (1994) Evaluating approaches to the conservation of rare and endangered plants. Ecology, 75, 584–606.

    Google Scholar 

  • Schmithüsen J (1960) Die Nadelhölzer in den Waldgesellschaften der südlichen Anden. Vegetatio, 9, 313–327.

    Google Scholar 

  • Soltis DE, Rieseberg LH (1986) Autopolyploidy in Tolmiea menziesii (Saxifragaceae): genetic insights from enzyme electrophoresis. Am. J. Bot., 73, 310–318.

    Google Scholar 

  • Soltis DE, Soltis PS (1989) Isozymes in Plant Biology. Discorides Press, Portland, Oregon.

    Google Scholar 

  • SUCRE: Sustainable use, conservation and restoration of native forests in southern Mexico and south-Central Chile (1998) In: INCO-DC International Cooperation with Developing Countries: Practical Information and Programmes, Funded Projects, Agriculture and Natural Resources (ed. European Comission), pp. 182. Belgium. Available at http://helios.bto. ed.ac.uk/ierm/research/sucre/sucre.htm.

  • Threatened Species Conservation Act (1979) Determination that Fitzroya cupressoides is a threatened species. Federal Register, 44, 64730–64733.

    Google Scholar 

  • Tortorelli LA (1956) Maderas y Bosques Argentinos. Editorial Acme, Buenos Aires, Argentina.

    Google Scholar 

  • Veblen TT, Ashton DH (1982) The regeneration status of Fitzroya cupressoides in the Cordillera Pelada, Chile. Biol. Cons., 23, 141–161.

    Google Scholar 

  • Veblen TT, Delamstro RN, Schlatter J (1976) The conservation of Fitzroya cupressoides and its environment in southern Chile. Environ. Cons., 3, 291–301.

    Google Scholar 

  • Veblen TT, Burns BR, Kitzberger T, Lara A, Villalba R (1995) The ecology of the conifers of southern South America. In: Ecology of Southern Conifers (eds. Enright NJ, Hill RS), pp. 120–155. Melbourne University Press, Carlton, Victoria, Australia.

    Google Scholar 

  • Watson L.E, Elisens WJ, Estes JR (1991) Electrophoretic and cytogenetic evidence for allopolyploid origin of Marshallia mohrii (Asteraceae). Am. J. Bot., 78, 408–416.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.C. Premoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Premoli, A., Kitzberger, T. & Veblen, T. Conservation genetics of the endangered conifer Fitzroya cupressoides in Chile and Argentina. Conservation Genetics 1, 57–66 (2000). https://doi.org/10.1023/A:1010181603374

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010181603374

Navigation