Skip to main content
Log in

How to Quantize the Antibracket

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We show that in contrast to \({\mathfrak{p}}o(2n|m)\), its quotient modulo center, the Lie superalgebra \({\mathfrak{h}}(2n|m)\) of Hamiltonian vector fields with polynomial coefficients, has exceptional additional deformations for \((2n|m) = (2|2)\) and only for this superdimension. We relate this result to the complete description of deformations of the antibracket (also called the Schouten or Buttin bracket). It turns out that the space in which the deformed Lie algebra (result of quantizing the Poisson algebra) acts coincides with the simplest space in which the Lie algebra of commutation relations acts. This coincidence is not necessary for Lie superalgebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Yu. Kotchetkov, Deformations of Lie Superalgebras [in Russian] (Deposit No. 384–85), VINITI, Moscow (1985).

    Google Scholar 

  2. D. Leites, Sov. Math. Dokl., 18, 1277–1280 (1977).

    Google Scholar 

  3. B. Kostant and S. Sternberg, Ann. Phys., 176, 49–113 (1987).

    Google Scholar 

  4. D. Leites, Theor. Math. Phys., 58, 150–152 (1984); “Quantization: Supplement 3,” in: Schr¨odinger Equation (F. Berezin and M. Shubin, eds.), Kluwer, Dordrecht (1991), pp. 483–522.

  5. B. Fedosov, J. Diff. Geom., 40, 213–238 (1994); Deformation Quantization and Index Theory, Akad. Verlag, Berlin (1996); I. Gelfand, V. Retakh, and M. Shubin, Adv. Math., 136, 104–140 (1998).

    Google Scholar 

  6. P. Deligne, Selecta Math. (ns), 1, No. 4, 667–697 (1995).

    Google Scholar 

  7. J. Vey, Comment. Math. Helv., 50, 421–454 (1975).

    Google Scholar 

  8. M. Hazewinkel and M. Gerstenhaber, eds., Deformation Theory of Algebras and Structures and Applications, Kluwer, Dordrecht (1988).

  9. F. A. Berezin, Commun. Math. Phys., 40, 153–174 (1975); Math. USSR Izv., 8, 1109–1165 (1974); Izv. Akad. Nauk SSSR Ser. Mat., 39, 363–402 (1975).

    Google Scholar 

  10. I. Shereshevskii, Sov. Math. Dokl., 20, 402–405 (1979); Lett. Math. Phys., 5, 429–435 (1981).

    Google Scholar 

  11. M. Kontsevich, “Deformation quantization of Poisson manifolds,” Preprint q-alg/9709040 (1997).

  12. M. Bordemann, “The deformation quantization of certain super-Poisson brackets and BRST cohomology,” Preprint math.QA/0003218 (2000).

  13. P. Grozman, D. Leites, and I. Shchepochkina, “Lie superalgebras of string theories,” Preprint hep-th/9702120 (1997).

  14. I. Batalin and I. Tyutin, “General local solution to the cyclic Jacobi equation,” unpublished.

  15. F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer, Ann. Phys., 111, 61–110 (1978).

    Google Scholar 

  16. A. Dzhumadildaev, Z. Phys. C, 72, 509–517 (1996).

    Google Scholar 

  17. D. Leites, Russ. Math. Surv., 35, 1–64 (1980); Supermanifold Theory [in Russian], Karelia Branch, USSR Acad. Sci., Petrozavodsk (1983).

    Google Scholar 

  18. D. B. Fuks, Cohomology of Infinite-Dimensional Lie Algebras [in Russian], Nauka, Moscow (1984); English transl., Plenum, New York (1986).

  19. Y. I. Manin, Gauge Field Theory and Complex Geometry [in Russian], Nauka, Moscow (1984); English transl., Springer, Berlin (1997).

  20. S. Cheng and V. Kac, Adv. Theor. Math. Phys., 2, 1141–1182 (1998).

    Google Scholar 

  21. J. Wess and B. Zumino, Nucl. Phys. B, 70, 39–50 (1974); J. Wess, “Supersymmetry-supergravity,” in: Topics in Quantum Field Theory and Gauge Theories (J. A. de Azcárraga, ed.) (Lect. Notes Phys., Vol. 77), Springer, Berlin (1978), pp. 81–125; J. Wess and B. Zumino, Phys. Lett. B, 66, 361–364 (1977); J. Wess, “Supersymmetry/ supergravity,” in: Concepts and Trends in Particle Physics (Schladming, 1986), Springer, Berlin (1987), pp. 29–58; “Introduction to supersymmetric theories,” in: Frontiers in Particle Physics '83 (Dubrovnik, 1983), World Scientific, Singapore (1984), pp. 104–131; J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton Univ. Press, Princeton, NJ (1983).

    Google Scholar 

  22. E. Witten, Phys. Lett. B, 77, 394–400 (1978); “Grand unification with and without supersymmetry,” in: Introduction to Supersymmetry in Particle and Nuclear Physics (Mexico City, 1981), Plenum, New York (1984), pp. 53–76.

    Google Scholar 

  23. L. E. Gendenshtein and I. V. Krive, Sov. Phys. Usp., 28, 645–666 (1985).

    Google Scholar 

  24. A. Raina, C. R. Acad. S ci. Paris. Sér. I Math., 318, 851–856 (1994).

    Google Scholar 

  25. M. A. Shubin, Geom. Funct. Anal., 6, 370–409 (1996); “Novikov inequalities for vector fields,” in: The Gelfand Mathematical Seminars, 1993–1995 (I. M. Gelfand et al., eds.), Birkhäuser, Boston (1996), pp. 243–274.

    Google Scholar 

  26. J. Bernstein, “The Lie superalgebra osp(1|2), connections over symplectic manifolds, and representations of Poisson algebras,” in: Seminar on Supermanifolds (D. Leites, ed.), Stockholm Univ. Press, Stockholm (1987), pp. 1–60; A. V. Shapovalov, Serdica, 7, 337–342 (1981); G. S. Shmelev, Serdica, 8, 408–417 (1982); Funct. Anal. Appl., 17, 76–77 (1983).

    Google Scholar 

  27. G. S. Shmelev, Funct. Anal. Appl., 17, 323–325 (1983); 76–77; Serdica, 8, 408–417 (1982); Math. USSR Sb., 48, 521–533 (1984); C. R. Acad. Bulg. Sci., 35, 287–290 (1982).

    Google Scholar 

  28. Yu. Yu. Kochetkov, “Induced irreducible representations of Leites superalgebras,” in: Problems in Group Theory and in Homological Algebra [in Russian] (A. Onishchik et al., eds.), Yaroslavskii State Univ., Yaroslavl (1983), pp. 120–123; Vopr. Teor. Grupp Gomolog. Alg., 9, 142–148 (1989).

    Google Scholar 

  29. F. A. Berezin, Russ. Math. Surv., 24, 65–88 (1969).

    Google Scholar 

  30. J. Gomis, J. Paris, and S. Samuel, Phys. Rep., 259, 1–191 (1995).

    Google Scholar 

  31. I. Batalin and I. Tyutin, “Generalized field-antifield formalism,” in: Topics in Statistical and Theoretical Physics (R. Dobrushin et al., eds.) (Trans. Am. Math. Soc., Ser. 2, Vol. 177), Am. Math. Soc., Providence, RI (1996), pp. 23–43.

  32. D. Leites, “Lie superalgebras,” in: Modern Problems of Mathematics: Recent Developments (R. M. Gamkrelidze, ed.) [in Russian], Vol. 25, VINITI, Moscow (1984), pp. 3–49; English transl.: J. Sov.Math., 30, 2481–2512 (1985).

    Google Scholar 

  33. Yu. Yu. Kochetkov, Russ. Math. Surv., 44, 167–168 (1989).

    Google Scholar 

  34. Yu. Kotchetkoff, C. R. Acad. Sci. Paris. Ser. I, 299, 643–645 (1984).

    Google Scholar 

  35. Yu. Yu. Kochetkov, Math. Notes, 63, 342–351 (1998); N. van den Hijligenberg, Y. Kotchetkov, and G. Post, J. Algebra Comput., 3, 57–77 (1993).

    Google Scholar 

  36. N. W. van den Hijligenberg and Yu. Yu. Kotchetkov, J. Math. Phys., 37, 5858–5868 (1996).

    Google Scholar 

  37. N. van den Hijligenberg, Y. Kotchetkov, and G. Post, Math. Comput., 64, No. 211, 1215–1226 (1995); Yu. Yu. Kochetkov, Funct. Anal. Appl., 28, 211–213 (1994).

    Google Scholar 

  38. I. Shchepochkina, “The five exceptional simple Lie superalgebras of vector fields,” Preprint hep-th/9702120 (1997); Represent. Theory (electr. jour.), 3, 373–415 (1999); I. Shchepochkina and G. Post, Int. J. Algebra Comput., 8, 479–495 (1998); Preprint physics/9703022 (1997).

    Google Scholar 

  39. D. Leites and I. Shchepochkina, “Classification of simple Lie superalgebras of vector fields,” (to appear).

  40. D. Alekseevsky, D. Leites, and I. Shchepochkina, C. R. Acad. Bulg. Sci., 34, No. 9, 1187–1190 (1980).

    Google Scholar 

  41. V. Kac, Adv. Math., 26, 8–96 (1977).

    Google Scholar 

  42. V. V. Serganova, Funct. Anal. Appl., 17, 200–207 (1983); 19, 226–228 (1985); “Outer automorphisms and real forms of Kac-Moody superalgebras,” in: Group Theoretical Methods in Physics (Zvenigorod, 1982) (M. I.Markov et al., eds.), Vols. 1–3, Harwood, Chur (1985), pp. 639–642.

    Google Scholar 

  43. D. Leites and I. Shchepochkina, “Classification of simple real Lie superalgebras of vector fields,” Preprint math.RT (to appear).

  44. G. S. Shmelev, C. R. Acad. Bulg. Sci., 36, 569–570 (1983).

    Google Scholar 

  45. A. Perelomov, Integrable Systems of Classical Mechanics and Lie Algebras, Vol. 1, Birkhäuser, Basel (1990).

    Google Scholar 

  46. C. Duval, P. Lecomte, and V. Ovsienko, Ann. Inst. Fourier (Grenoble), 49, 1999–2029 (1999); Preprint math. DG/9902032 (1999).

    Google Scholar 

  47. P. B. A. Lecomte and V. Yu. Ovsienko, Lett. Math. Phys., 49, No. 3, 173–196 (1999); Preprint math.DG/9809061 (1998).

    Google Scholar 

  48. D. Leites and E. Poletaeva, Math. Scand., 81, 5–19 (1997).

    Google Scholar 

  49. P. Grozman, D. Leites, and E. Poletaeva, “Defining relations for simple Lie superalgebras of polynomial vector fields,” in: Supersymmetries and Quantum Symmetries (SQS'99, 27–31 July, 1999) (E. Ivanov et al., eds.), JINR, Dubna (2000), pp. 387–396.

    Google Scholar 

  50. R. Floreanini, D. Leites, and L. Vinet, “On the defining relations of quantum Poisson superalgebras,” (to appear).

  51. D. Leites and A. Shapovalov, J. Nonlinear Math. Phys., 7, No. 2, 120–125 (2000).

    Google Scholar 

  52. P. Ya. Grozman, Funct. Anal. Appl., 14, 127–128 (1980).

    Google Scholar 

  53. V. Guillemin and S. Sternberg, Symplectic Techniques in Physics, Cambridge Univ. Press, Cambridge (1990).

    Google Scholar 

  54. D. B. Fuchs and D. Leites, C. R. Acad. Bulg. Sci., 37, 1595–1596 (1984).

    Google Scholar 

  55. A. Sergeev, “An analog of the classical invariant theory for Lie superalgebras,” Preprint math.RT/9810113 (1998).

  56. A. Sergeev, “Irreducible representations of solvable Lie superalgebras,” Preprint math.RT/9810109 (1998); Represent. Theory (electr. jour.), 3, 435–443 (1999).

    Google Scholar 

  57. J. Bernstein and D. Leites, Selecta Math. Soviet., 1, No. 2, 143–160 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leites, D.A., Shchepochkina, I.M. How to Quantize the Antibracket. Theoretical and Mathematical Physics 126, 281–306 (2001). https://doi.org/10.1023/A:1010312700129

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010312700129

Keywords

Navigation