Skip to main content
Log in

Respiration of Recently-Fixed Plant Carbon Dominates Mid-Winter Ecosystem CO2 Production in Sub-Arctic Heath Tundra

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Arctic ecosystems could provide a substantial positive feedback to global climate change if warming stimulates below-ground CO2 release by enhancing decomposition of bulk soil organic matter reserves.Ecosystem respiration during winter is important in this context because CO2 release from snow-covered tundra soils is a substantial component of annual net carbon (C) balance, and because global climate models predict that the most rapid rises in regional air temperature will occur in the Arctic during winter. In this manipulative field study, the relative contributions of plant and bulk soil organic matter C pools to ecosystem CO2 production in mid-winter were investigated. We measured CO2 efflux rates in Swedish sub-arctic heath tundra from control plots and from plots that had been clipped in the previous growing season to disrupt plant activity. Respiration derived from recently-fixed plant C (i.e., plant respiration, and respiration associated with rhizosphere exudates and decomposition of fresh litter) was the principal source of CO2 efflux, while respiration associated with decomposition of bulk soil organic matter was low, and appeared relatively insensitive to temperature. These results suggest that warmer mid-winter temperatures in the Arctic may have a much greater impact on the cycling of recently-fixed, plant-associated C pools than on the depletion of tundra bulk soil C reserves, and consequently that there is a low potential for significant initial feedbacks from arctic ecosystems to climate change during mid-winter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alm, J., Saarnio, S., Nykänen, H., Silvola, S., and Martikainen, P. J.: 1999, ‘Winter CO2, CH4 and N2O Fluxes on Some Natural and Drained Boreal Peatlands’, Biogeochemistry 44, 163–186.

    Google Scholar 

  • Boone, R. D., Nadelhoffer, K. J., Canary, J. D., and Kaye, J. P.: 1998, ‘Roots Exert a Strong Influence on the Temperature Sensitivity of Soil Respiration’, Nature 396, 570–572.

    Google Scholar 

  • Brooks, P. D., Williams, M. W., and Schmidt, S. K.: 1996, ‘Microbial Activity under Alpine Snowpacks, Niwot Ridge, Colorado’, Biogeochemistry 32,93–113.

    Google Scholar 

  • Cheng, W. and Coleman, D. C.: 1990, ‘Effect of Living Roots on Soil Organic Matter Decomposition’, Soil Biol. Biochem. 22,781–787.

    Google Scholar 

  • Clein, J. S. and Schimel, J. P.: 1995, ‘Microbial Activity of Tundra and Taiga Soils at Sub-Zero Temperatures’, Soil Biol. Biochem. 27, 1231–1234.

    Google Scholar 

  • Coxson, D. S. and Parkinson, D.: 1987, ‘Winter Respiratory Activity in Aspen Woodland Forest Floor Litter and Soils’, Soil Biol. Biochem. 19,49–59.

    Google Scholar 

  • Coyne, P. I. and Kelley, J. J.: 1971, ‘Release of Carbon Dioxide from Frozen Soil to the Arctic Atmosphere’, Nature 234, 407–408.

    Google Scholar 

  • Dalenberg, J. W. and Jager, G.: 1989, ‘Priming Effect of Some Organic Additions to 14C-Labelled Soil’,Soil Biol. Biochem. 21,443–448.

    Google Scholar 

  • Fahnestock, J. T., Jones, M. H., Brooks, P. D., Walker, D. A., and Welker, J. M.: 1998, ‘Winter and Early Spring CO2 Efflux from Tundra Communities of Northern Alaska’, J. Geophys. Res. 103, 29023–29027.

    Google Scholar 

  • Flanagan, P.W. and Bunnell, F. L.: 1980, ‘Microflora Activities and Decomposition’, in Brown, J. L., Miller, P. C., Tiezen, L. L., and Bunnell, F. L. (eds.), An Arctic Ecosystem: The Coastal Tundra at Barrow, Alaska, Van Nostrand Reinhold, New York, pp. 291–334.

    Google Scholar 

  • Flanagan, P. W. and Veum, A. K.:1974, ‘Relationships between Respiration, Weight Loss, Temperature and Moisture in Organic Residues on Tundra’, in Holding, A. J., Heal, O. W., MacClean, S. F.Jr., and Flanagan, P. W. (eds.), Soil Organisms and Decomposition in Tundra,IBP Tundra Biome Steering Committee, Stockholm, Sweden, pp. 249–277.

    Google Scholar 

  • Grogan, P. and Chapin, F. S. III.: 1999, ‘Arctic Soil Respiration: Effects of Climate and Vegetation Depend on Season’,Ecosystems 2,451–459.

    Google Scholar 

  • Havström, M., Callaghan, T. V., and Jonasson, S.: 1993, ‘Differential Growth Responses of Cassiope tetragona, an Arctic Dwarf Shrub, to Environmental Perturbations among Three Contrasting High-and Sub-Arctic Sites’, Oikos 66,389–402.

    Google Scholar 

  • Holland, E. A. and Coleman, D. C.: 1987, ‘Litter Placement Effects onMicrobial and Organic Matter Dynamics in an Agroecosystem’, Ecology 68,425–433.

    Google Scholar 

  • Johnson, L. C., Shaver, G. R., Rastetter, E., Nadelhoffer, K. J., Giblin, A., Laundre, J., Cades, D., and Stanley, A.: 2000, ‘Plant Carbon-Nutrient Interactions Control CO2 Exchange in Alaskan Wet Sedge Tundra Ecosystems’,Ecology 81, 453–469.

    Google Scholar 

  • Jonasson, S., Michelsen, A., Schmidt, I. K., and Nielsen, E. V.: 1999, ‘Responses in Microbes and Plants to Changed Temperature, Nutrient and Light Regimes in the Arctic’,Ecology 80, 1828–1843.

    Google Scholar 

  • Kattenberg, A. F., Giorgi, H., Grassl, H., Meehl, J. F. B., Mitchell, R. J., Stouffer, T., Tokioka, A. J., Weaver, A. J., and Wigley, T. M. L.: 1996, ‘Climate Models – Projections of Future Climate’, in Houghton, J. T., Meiro Filho, L. G., Callender, B. A., Henris, N., Kattenberg, A., and Maskell, K. (eds.), Climate Change 1995: The Science of Climate Change 2nd Assessment Report of the Intergovernmental Panel on Climate Change,Cambridge University Press, Cambridge, pp. 289–357.

    Google Scholar 

  • Lashof, D. A.: 1989, ‘The Dynamic Greenhouse: Feedback Processes that May Influence Future Concentrations of Atmospheric Trace Gases and Climatic Change’,Clim. Change 14,213–242.

    Google Scholar 

  • LI-COR: 1998, ‘Considerations for Measuring Ground CO2 Effluxes with Chambers’, Application note #124,LI-COR, NE, U.S.A.

    Google Scholar 

  • Mast, M. A., Wickland, K. P., Striegl, R. T., and Clow, D.: 1998, ‘Winter Fluxes of CO2 and CH4 from Subalpine Soils in Rocky Mountain National Park, Colorado’, Global Biogeochem. Cycles 12,607–620.

    Google Scholar 

  • McKane, R. B., Rastetter, E. B., Shaver, G. R., Nadelhoffer, K. J., Giblin, A. E., Laundre, J. A., and Chapin, F. S. III.: 1997, ‘Climatic Effects on Tundra Carbon Storage Inferred from Experimental Data and a Model’,Ecology 78,1170–1187.

    Google Scholar 

  • Michelsen, A., Jonasson, S., Sleep, D., Havström, M., and Callaghan, T. V.: 1996, ‘Shoot Biomass, 13C, Nitrogen and Chlorophyll Responses of Two Arctic Dwarf Shrubs to In Situ Shading, Nutrient Application and Warming Simulating Climatic Change’, Oecologia 105,1–12.

    Google Scholar 

  • Oechel, W. C., Vourlitis, G., and Hastings, S. J.: 1997, ‘Cold Season CO2Emission from Arctic Soils’, Global Biogeochem. Cycles 11,163–172.

    Google Scholar 

  • Post, W. M., Emmanuel, W. R., Zinke, P. J., and Strangenburger, A. G.: 1982, ‘Soil Carbon Pools and World Life Zones’, Nature 298,156–159.

    Google Scholar 

  • Schimel, J. P. and Clein, J. S.: 1996, ‘Microbial Response to Freeze-Thaw Cycles in Tundra and Taiga Soils’,Soil Biol. Biochem. 28,1061–1066.

    Google Scholar 

  • Shaver, G. R., Johnson, L. C., Cades, D. H., Murray, G., Laundre, J., Rastetter, E. B., Nadelhoffer, K. J., and Giblin, A. E.: 1998, ‘Biomass and CO2 Flux in Wet Sedge Tundras: Responses to Nutrients, Temperature and Light’,Ecol. Monogr. 68,75–97.

    Google Scholar 

  • Skogland, T., Lomeland, S., and Goksøyr, J.: 1988, ‘Respiratory Burst after Freezing and Thawing of Soil: Experiments with Soil Bacteria’,Soil Biol. Biochem. 20,851–856.

    Google Scholar 

  • Sommerfeld, R. A., Massman, W. J., and Musselman, R. C.: 1996, ‘Diffusional Flux of CO2 through Snow: Spatial and Temporal Variability among Alpine-Subalpine Sites’,Global Biogeochem. Cycles 10,473–482.

    Google Scholar 

  • Sommerfeld, R. A., Mosier, A. R., and Musselman, R. C.: 1993, ‘CO2, CH4 and N2O Flux through a Wyoming Snowpack and Implications for Global Budgets’, Nature 361,140–142.

    Google Scholar 

  • Vourlitis, G. L. and Oechel, W. C.: 1999, ‘Eddy Covariance Measurements of CO2 and Energy Fluxes of an Alaskan Tussock Tundra Ecosystem’,Ecology 80,686–701.

    Google Scholar 

  • Winston, G. C., Sundquist, E. T., Stephens, B. B., and Trumbore, S. E.: 1997, ‘Winter Fluxes in a Boreal Forest’,J. Geophys. Res. 102,28,795–28,804.

    Google Scholar 

  • Zimov, S. A., Davidov, S. P., Voropaev, Y. V., Prosiannikov, S. F., Semiletov, I. P., Chapin, M. C., and Chapin, F. S. III.: 1996, ‘Siberian CO2 Efflux in Winter as a CO2 Source and Cause of Seasonality in Atmospheric CO2’, Clim. Change 33,111–120.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grogan, P., Illeris, L., Michelsen, A. et al. Respiration of Recently-Fixed Plant Carbon Dominates Mid-Winter Ecosystem CO2 Production in Sub-Arctic Heath Tundra. Climatic Change 50, 129–142 (2001). https://doi.org/10.1023/A:1010610131277

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010610131277

Keywords

Navigation