Skip to main content
Log in

Mutation induction and tissue culture in improving fruits

  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

This review describes in vitro mutation induction methods in fruits and the in vitro selection procedures available for early screening. Results obtained through in vitro mutation techniques, including somaclonal variation, are reviewed and compared with the current achievements and future prospects of transgenic breeding. Plant improvement based on mutations, which change one or a few specific traits of a cultivar, can contribute to fruit improvement without altering the requirements of fruit industry. Induced mutations have well defined limitations in fruit breeding applications, but their possibilities may be expanded by the use of in vitro techniques. Tissue culture increases the efficiency of mutagenic treatments for variation induction, handling of large populations, use of ready selection methods, and rapid cloning of selected variants. Molecular techniques can provide a better understanding of the potential and limitations of mutation breeding e.g. molecular marker-assisted selection, which can lead to the early identification of useful variants. The relatively high number of research reports compared with the low number of cultivars released suggests that mutagenesis in combination with tissue culture is either ineffective or has yet to be exploited in fruits. Positive achievement recorded in other species seem to support the hypothesis that in vitro mutation induction has high potential also for fruit improvement. The possible contribution of a well-pondered and coordinated use of the numerous mutation induction, mutant selection, and field validation procedures available to advances in fruit breeding is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aarts MGM, Dirkse WG, Stiekema WJ & Pereira A (1993) Transposon tagging of a male sterility gene in Arabidopsis. Nature 363: 715-717

    PubMed  CAS  Google Scholar 

  • Ahloowalia BS (1998) In-vitro techniques and mutagenesis for the improvement of vegetatively propagated plants. In: Jain SM, Brar DS & Ahloowalia BS (eds) Somaclonal Variation and Induced Mutations in Crop Improvement (pp 293-309). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Ahnström G (1977) Radiobiology. In: Manual on Mutation Breeding. Second edition. Technical Reports Series No. 119 (pp 21-27). IAEA. Vienna

    Google Scholar 

  • Aldwinckle HS, Norelli JL, Bolar JP, Ko K, Harman GE & Brown SK (1999) Genetic engineering of disease resistance in apple fruit cultivars and rootstocks. In: Altman A, Ziv M & Izhar S (eds) Plant Biotechnology and In Vitro Biology in the 21st Century (pp 449-451). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Altman A (1993) On genes and gene-worship or: an horticulturist view of molecular biology.Acta Hort. 329: 218-224

    Google Scholar 

  • Altman A (1999) The plant and agricultural biotechnology revolution: where do we go from here? In: Altman A, Ziv M & Izhar S (eds) Plant Biotechnology and In Vitro Biology in the 21st Century (pp 1-7). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Anderberg MR (1973) Cluster analysis for applications. Academic Press Inc., New York

    Google Scholar 

  • Antonius-Klemola K (1999) Molecular markers in Rubus (Rosaceae) research and breeding. J. Hort. Sci. & Biotech. 74: 149-160

    CAS  Google Scholar 

  • Arùs P, Messeguer M, Viruel K, Tobutt E, Direganger F, Santi R, Quarta R & Ritter E (1994). The European Prunus mapping project. Progress in the almond linkage map. Euphytica 77: 97-101

    Google Scholar 

  • Avsian-Kretchmer O, Eshdat Y, Gueta-Dahan Y & Ben-Hayyim G (1999) Regulation of stress-induced phospholipid hydroperoxide glutathione peroxidase expression in Citrus. Planta 209: 469-477

    PubMed  CAS  Google Scholar 

  • Baird WY, Ballard RE, Rajapakse S & Abbott AG (1996) Progress in Prunus mapping and application of molecular markers to germplasm improvement. HortSci. 31: 1099-1104

    CAS  Google Scholar 

  • Battistini C & Rosati P (1991) In vitro evaluation of somaclonal strawberry (Fragaria × ananassa 'Brighton') variants for susceptibility to Phytophthora cactorum In: Dale A & Lubby D (eds) The Strawberry Into the 21st Century (pp 121-123). Timber Press, Portland

    Google Scholar 

  • Bell RL, Scorza R, Srinivasan C & Webb K (1999) Transformation of 'Beurre Bosc' pear with the rolC gene. J. Amer. Soc. Hort. Sci. 124: 570-574

    CAS  Google Scholar 

  • Beloualy N & Bouharmont J (1992) NaCl-tolerant plants of Poncirus trifoliata regenerated from tolerant cell lines. Theor. Appl. Gen. 83: 509-514

    Google Scholar 

  • Ben-Hayyim G & Goffer Y (1989) Plantlet regeneration from NaClselected salt-tolerant callus culture of Shamouti oranges (Citrus sinesis L. Osbeck). Plant Cell Rep. 7: 680-683

    CAS  Google Scholar 

  • Ben-Hayyim G & Khocba J (1983) Aspects of salt tolerance in a NaCl sodium chloride-selected stable cell line of Citrus sinesis Shamouti oranges. Plant Physiol. 72: 685-690

    PubMed  CAS  Google Scholar 

  • Bhagwat B & Duncan EJ (1998a) Mutation breeding of banana cv. Highgate (Musa spp., AAA Group) for tolerance to Fusarium oxysporum f. sp. cubense using chemical mutagens. Scientia Hort. 73: 11-22

    CAS  Google Scholar 

  • Bhagwat B & Duncan EJ (1998b) Mutation breeding of Highgate (Musa acuminata, AAA) for tolerance to Fusarium oxysporum f. sp. cubense using gamma irradiation. Euphytica 101: 143-150

    Google Scholar 

  • Bolar JP, Norelli JL, Harman GE, Brown SK & Aldwinckle HS (1999) Expression of fungal chitinolytic enzymes in transgenic apples confers high levels of resistance to scab. In: Altman A, Ziv M & Izhar S (eds) Plant Biotechnology and in vitro Biology in the 21st Century (pp 465-468). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Bouchez D & Höfte H (1998) Functional genomics in plants. Plant Physiol. 118: 725-732

    PubMed  CAS  Google Scholar 

  • Bouharmont J (1994) Application of somaclonal variation and in vitro selection to plant improvement. Acta Hort. 355: 213-218

    Google Scholar 

  • Brar DS & Jain SM (1998) Somaclonal variation: mechanism and applications in crop improvement. In: Jain SM, Brar DS & Ahloowalia BS (eds) Somaclonal Variation and Induced Mutations in Crop Improvement (pp 15-37). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Briggs RW & Constantin MJ (1977) Radiation types and radiation sources. In: Manual on Mutation Breeding. Second edition. Technical Reports Series No. 119 (pp 7-20). IAEA, Vienna

    Google Scholar 

  • Briggs RW & Konzak CF (1977) Object and methods of treatment. In: Manual on Mutation Breeding. Second edition. Technical Reports Series No. 119 (pp 33-39). IAEA, Vienna

    Google Scholar 

  • Brisset MN, Paulin JP & Duron M (1988) Feasibility of rating fire blight susceptibility of pear cultivars (Pyrus communis) on in vitro microcuttings. Agronomie 8: 707-710

    Google Scholar 

  • Britt AB (1996) DNA damage and repair in plants. Annu. Rev. Plant Mol. Biol. 47: 75-100

    CAS  Google Scholar 

  • Broertjes C (1977) General considerations, breeding methods and selection of parents. In: Manual on Mutation Breeding. Second edition. Technical Reports Series No.119 (pp 159-160). IAEA, Vienna

    Google Scholar 

  • Broertjes C (1982). Significance of in vitro adventitious bud techniques for mutation breeding of vegetatively propagated crops. In: Induced Mutations in Vegetatively Propagated Plants, II (pp 1-9). IAEA, Vienna

    Google Scholar 

  • Broertjes C & Van Harten AM (1985) Single cell origin of adventitious buds. Euphytica 34: 93-95

    Google Scholar 

  • Broertjes C & Van Harten AM (1988) Applied Mutation Breeding for Vegetatively Propagated Crops. Elsevier Publishers, Amsterdam

    Google Scholar 

  • Brunner H & Keppl H (1991) Radiation induced apple mutants of improved commercial value. In: Plant Mutation Breeding for Crop Improvement, Vol 1 (pp 547-552). IAEA, Vienna

    Google Scholar 

  • Bunnag S, Dolcet-Sanjuan R, Mok DWS & Mok MC (1996) Responses of two somaclonal variants of quince (Cydonia oblonga) to iron deficiency in the greenhouse and field.J. Am. Soc. Hort. Sci. 121: 1054-1058

    Google Scholar 

  • Burr B, Evola SV, Burr FA & Beckman JS (1983) The application of restriction fragment length polymorphisms to plant breeding. In: Setlow JK & Holander A (eds) Genetic Engineering Principles and Methods, Vol. 5, (pp 45-59). Plenum Press, New York

    Google Scholar 

  • Cai Q, Guy CL & Moore GA (1994) Extension of the linkage map in citrus using random amplified plymorphic DNA (RAPD) markers and RFLP mapping of cold acclimation responsive loci.Theor. Appl. Genet. 89: 606-614

    CAS  Google Scholar 

  • Campbell AI & Sparks TR (1985) Compact mutants: production, selection and performance in ‘'Bramley's Seedling’ apple.Acta Hort 180: 11-18

    Google Scholar 

  • Caplan A, Berger PH & Naderi M (1998) Phenotypic variation between transgenic plants: what is making gene expression unpredictable? In: Jain SM, Brar DS & Ahloowalia BS (eds) Somaclonal Variation and Induced Mutations in Crop Improvement (pp 539-562). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Cassells AC (1998) In-vitro-induced mutations for disease resistance. In: Jain SM, Brar DS & Ahloowalia BS (eds) Somaclonal Variation and Induced Mutations in Crop Improvement (pp 367-378). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Cassells AC, Joyce SM, Curry RF & McCarthy TF (1999) Detection of economically important variability in micropropagation. In: Altman A, Ziv M & Izhar S (eds) Plant Biotechnology and in vitro Biology in the 21st Century (pp 241-244). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Cervera M, Ortega C, Navarro A, Navarro L & Pena L (2000) Generation of transgenic citrus plants with the tolerance-to-salinity gene HAL2 from yeast.J. Hortic. Sci. Biotechnol. 75: 26-30

    CAS  Google Scholar 

  • Cervera M, Pina JA, Juarez J, Navarro L & Pena L (2000) A board exploration of transgenic population of citrus: stability of gene expression and phenotype. Theor. Appl. Genet. 100: 670-677

    CAS  Google Scholar 

  • Chaparro JX, Werner DJ, O'Malley D & Sederoff RR (1994) Targeted mapping and linkage analysis of morphological, isoenzyme and RAPD markers in peach.Theor Appl. Genet. 87: 805-815

    CAS  Google Scholar 

  • Charbaji T & Nabulsi I (1999) Effect of low doses of gamma irradiation on in vitro growth of grapevine. Plant Cell Tiss. Org. Cult. 57: 129-132

    Google Scholar 

  • Cheng FS, Weeden NF & Brown SK (1996) Identification of codominant RAPD markers tightly linked to fruit skin color in apple.Theor. Appl. Genet. 93: 222-227

    CAS  Google Scholar 

  • Chevreau E, Brisset MN, Paulin JP & James DJ (1998) Fire blight resistance and genetic trueness-to-type of four somaclonal variants from the apple cultivar Greensleeves. Euphytica 104: 199-205

    Google Scholar 

  • Conner PJ, Brown SK & Weeden NF (1997) Randomly amplified polymorphic DNA-based genetic linkage maps of three apple cultivars. J. Am. Soc. Hort. Sci. 122: 350-359

    CAS  Google Scholar 

  • D'Amato F (1977) Cytogenetics of differentiation in tissue and cell cultures. In: J. Reinert & Bajaj YPS (eds) Applied and Fundamental Aspects of Plant Cell, Tissue and Organ Culture (pp 343-357). Springer-Verlag, New York

    Google Scholar 

  • D'Amato F (1986) Spontaneous mutations and somaclonal variation. In: Nuclear Techniques and in Vitro Culture for Plant Improvement (pp 3-9). IAEA, Vienna

    Google Scholar 

  • D'Amato F (1992) Induced mutations in crop improvement: basic and applied aspects. Agr. Med. 122 31-60

    Google Scholar 

  • Da Câmara Machado A, Katinger H & Laimar da Câmara Machado ML (1994) Coat protein-mediated protection against plum pox virus in herbaceous model plants and transformation of apricot and plum. Euphytica 77: 129-134

    Google Scholar 

  • Dalmayrac S, Colrat S, Guillén P, Guis M, Martínez-Reina G, Deswarte C, Bouzayen M, Roustan JP, Fallot J, Pech JC & Latché A (1999) Isolation and expression of a NADPH-dependent reductase gene able to detoxify the Eutypa lata toxin in grapevine. In: Altman A, Ziv M & Izhar S (eds) Plant Biotechnology and In vitro Biology in the 21st Century (pp 469-472). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Dandekar AM(1992) Transformation. In: Hammerschlag FA & Litz RE (eds.) Biotechnology of Perennial Fruit Crops (pp 141-168). CAB International, Wallingford

    Google Scholar 

  • Dandekar AM, Martin LA & McGranahan GH (1988) Genetic transformation and foreign gene expression in walnut tissue. J. Am. Soc. Hort. Sci. 113: 945-949

    Google Scholar 

  • Dandekar AM, McGranahan GH, Vail PV, Uratsu SL, Leslie CA & Tebbet JS (1994) Low levels of expression of wild type Bacillus thuringiensis var. kurstaki cry 1(c) sequences in transgenic walnut somatic embyos. Plant. Sci. 96: 151-162

    CAS  Google Scholar 

  • Dandekar AM, McGranahan GH, Vail PV, Uratsu SL, Leslie CA & Tebbet JS (1998) High levels of expression of full-length cryIA(c) gene from Bacillus thuringiensis in transgenic somatic walnut embryos. Plant Sci. 131: 181-193

    CAS  Google Scholar 

  • Davis TM & Yu H (1997) A linkage map of the diploid strawberry. Fragaria vesca. J. Hered. 88: 215-221

    CAS  Google Scholar 

  • Deng ZN, Gentile A, Domina F, Nicolosi E & Tribulato E (1995a) Selecting lemon protoplasts for insensitivity to Phoma tracheiphila toxin and regenerating tolerant plants J. Am. Soc. Hort. Sci. 120: 902-905

    Google Scholar 

  • Deng ZN, Gentile A, Nicolosi E, Domina E, Vardi A & Tribulato E (1995b) Identification of in vivo and in vitro lemon mutants with RAPD markers. J. Hort. Sci. 70: 117-125

    CAS  Google Scholar 

  • DeWald SG & Moore GA (1987) Somaclonal variation as a tool for the improvement of perennial fruit crops.Fruit Varieties J. 41: 54-57

    Google Scholar 

  • Dirlewanger E & Bodo C (1994) Molecular genetic mapping of peach. Euphytica 77: 101-103

    CAS  Google Scholar 

  • Dix PJ (1993) The role of mutant cell lines in studies on environmental stress tolerance: an assessment. Plant J. 3: 309-313

    CAS  Google Scholar 

  • Dolcet-Sanjuan R, Mok DWS & Mok MC (1992) Characterization and in vitro selection for iron efficiency in Pyrus and Cydonia. In Vitro Cell. Dev. Biol. 28: 25-29

    Google Scholar 

  • Dominguez A, Guerri J, Cambra M, Navarro L, Moreno P & Pena L (2000) Efficient production of transgenic citrus plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Rep. 19: 427-433

    CAS  Google Scholar 

  • Donini B (1982). Mutagenesis applied to improve fruit trees: techniques, methods and evaluation or radiation induced mutations. In: Induced Mutations in Vegetatively Propagated Plants, II (pp 29-36). IAEA, Vienna

    Google Scholar 

  • Donini B, Mannino P, Ancora G, Sonnino A, Fideghelli C, Della Strada F, Monastra F, Quarta R, Faedi W, Albertini A, Rivalta L, Pennone F, Rosati P, Calò A, Costacurta A, Cersosimo A, Cancellier S, Petruccioli G, Filippucci B, Panelli G, Russo F, Starrantino A, Roselli G, Romisondo P, Me G & Radicati L (1991) Mutation breeding programmes for the genetic improvement of vegetatively propagated plants in Italy. In: Plant Mutation Breeding for Crop Improvement, Vol 1 (pp 237-255). IAEA, Vienna

    Google Scholar 

  • Donini P & Sonnino A (1998) Induced mutation in plant breeding: current status and future outlook. In: Jain SM, Brar DS & Ahloowalia BS (eds) Somaclonal Variation and Induced Mutations in Crop Improvement (pp 255-291). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Donovan AM, Morgan R, Valombra-Piagnani C, Ridout MS, James DJ & Garrett CME (1994) Assessment of somaclonal variation in apple. I Resistance to the fire blight pathogen, Erwinia amylovora. J. Hort. Sci. 69: 105-113

    Google Scholar 

  • Duncan RR (1997) Tissue culture-induced variation and crop improvement. Adv. Agron. 58: 201-240

    CAS  Google Scholar 

  • Dunwell JM (2000) Transgenic approaches to crop improvement J. Exp. Bot. 51: 487-496

    PubMed  CAS  Google Scholar 

  • Durham RE, Liou PC, Gmitter FG (Jr) & Moore GA (1992) Linkage of restriction fragment length polymorphisms and isozymes in Citrus. Theor. Appl. Genet. 84: 39-48

    CAS  Google Scholar 

  • Duron, M, Paulin, JP, Brisset MN (1987) Use of in vitro propagated plant material for rating fire blight susceptibility. Acta Hort. 217: 317-324

    Google Scholar 

  • Fedoroff (1984) Transposable genetic elements in maize.Sci. Am. 250: 65-74

    Google Scholar 

  • Feldman KA (1991) T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. Plant J. 1: 71-82

    Google Scholar 

  • Fitch MMM, Manshardt RM, Gonsalves D, Slightom JL & Sanford JC (1992) Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Bio/Technology 10: 1466-1472

    CAS  Google Scholar 

  • Fraser LG, Harvey CF & Kent J (1991) Ploidy manipulation of kiwifruit in tissue culture. Acta Hort. 297: 109-114

    Google Scholar 

  • Fujimaki H (1996) Tangency of artificial mutation to recombinant-DNA in plant breeding. Gamma Field Symposia. 35: The tangency of mutation induction and genetic engineering in plant breeding. 1-4

    Google Scholar 

  • Gardiner SE, Bassett HCM, Noiton DAM, Bus VG, Hofstee ME, White AG, Ball RD, Forster RLS & Rikkerink EHA (1996) A detailed linkage map around an apple scab resistance gene demonstrates that two disease resistance classes both carry the Vf gene. Theor. Appl. Genet. 93: 485-493

    CAS  Google Scholar 

  • Gaul H (1977) Plant injury and lethality. In: Induced Mutations in Vegetatively Propagated Plant, II (pp 29-36). IAEA, Vienna

    Google Scholar 

  • Gentile A, Tribulato E, Deng ZN & Vardi A (1993) Nucellar callus of 'Femminello' lemon, selected for tolerance to Phoma tracheiphila toxin, shows enhanced release of chitanase and glucanase into the culture medium. Theor. Appl. Genet. 86: 527-532

    CAS  Google Scholar 

  • George EF (1993) Plant Propagation by Tissue Culture (pt. 1. Technology; pt. 2. In practice). Exegetics Ltd., Edington, Wilts

    Google Scholar 

  • Gidoni D, Rom M, Kunik T, Zur M, Izsak E, Izhar S & Firon (1994) Strawberry-cultivar identification using random amplified polymorphyc DNA (RAPD) markers. Plant Breed. 113: 339-342

    CAS  Google Scholar 

  • Goldy RG & Lyrene PM (1984) In vitro colchicine treatment of 4x Blueberries, Vaccinium sp. J. Amer. Soc. Hort. Sci. 109: 336-338

    CAS  Google Scholar 

  • Gueta-Dahan Y, Yaniv Z, Zilinskas A & Ben-Hayyim G (1997) Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in Citrus. Planta 203: 460-469

    PubMed  CAS  Google Scholar 

  • Grover A, Sahi C, Sanan N & Grover A (1999) Taming abiotic stresses in plants through genetic engineering: current strategies and perspective. Plant Sci. 143: 101-111

    CAS  Google Scholar 

  • Grumet R & Gifford F (1998) Plant biotechnology in the United States: issues and challenges en route to commercial production.HortSci. 33: 187-192

    Google Scholar 

  • Guilford P, Prakash S, Zhu JM, Rikkerink E, Gardiner S, Bassett H & Forster R (1997) Microsatellites in Malus × domestica (apple): abundance, polymorphism and cultivar identification. Theor. Appl. Genet. 94: 249-254

    CAS  Google Scholar 

  • Hall HK, Cohen D & Skirvin RM (1986a) The inheritance of thornlessness from tissue culture-derived 'Thornless Evergreen' blackberry. Euphytica 35: 891-898

    Google Scholar 

  • Hall HK, Quazi MH & Skirvin RM (1986b) Isolation of pure thornless loganberry by meristem tip culture 'Thornless Evergreen' blackberry. Euphytica 35: 1039-1044

    Google Scholar 

  • Hamill SD, Smith MK & Dodd WA (1992) In vitro induction of banana autotetraploids by colchicine treatment of micropropagated diploids. Aust. J. Bot. 40: 887-896

    CAS  Google Scholar 

  • Hammerschlag FA (1988) Selection of peach cells for insensitivity to culture filtrates of Xanthomonas campestris pv. pruni and regeneration of resistant plants. Theor. Appl. Genet. 76: 865-869

    Google Scholar 

  • Hammerschlag FA (1990) Resistant responses of plants regenerated from peach callus to Xanthomonas campestris pv. Pruni.. J. Am. Soc. Hort. Sci. 115: 1034-1037

    Google Scholar 

  • Hammerschlag FA (1992) Somaclonal variation. In: Hammerschlag FA & Litz RE (eds) Biotechnology of Perennial Fruit Crops (pp 35-56). CAB International, Wallingford

    Google Scholar 

  • Hammerschlag FA (2000) Resistant responses of peach somaclone 122-1 to Xanthomonas campestris pv. pruni and to Pseudomonas syringae pv. syringae.HortSci. 35: 141-143

    Google Scholar 

  • Hammerschlag FA & Ognjanov V (1990) Somaclonal variation in peach: screening for resistance to Xanthomonas campestris pv. pruni and to Pseudomonas syringae pv. syringae. Acta Hort. 280: 403-408

    Google Scholar 

  • Hammerschlag FA & Smigoki AC (1998) Growth and in vitro propagation of peach plants transformed with the shooty mutant strain of Agrobacterium tumefaciens. HortSci. 33: 897-899

    Google Scholar 

  • Hammerschlag FA, Bauchan GR & Scorza R (1985) Regeneration of peach plants from callus derived from immature embryos. Theor. Appl. Genet. 70: 248-251

    Google Scholar 

  • Hammerschlag FA, Ritchie D, Werner D, Hashmi G, Krusberg L, Meyer R & Huettel R (1995) In vitro selection of disease resistance in fruit trees. Acta Hort. 392: 19-26

    Google Scholar 

  • Hansche PE & Beres W (1980) Genetic remodeling of fruit and nut trees to facilitate cultivar improvement. HortSci. 15: 710-715

    Google Scholar 

  • Harelimana G, Lepoivre P, Jijakli H & Mourichon X (1997) Use of Mycosphaerella fijiensis toxin for the selection of banana cultivars resistant to Black Leaf Streak. Euphytica 96: 125-128

    Google Scholar 

  • Hartman JB & Vuylsteke D (1999) Breeding for fungal resistance in Musa. In: Scarascia Mugnozza GT, Porceddu E & Pagnotta MA (eds) Genetic and Breeding for Crop Quality and Resistance (pp 83-92). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Hashmi G, Hammerschlag FA, Huettel RN & Krusberg LR (1995) Growth, development and response of peach somaclones to the root-knot nematode, Meloidogyne incognita. J. Am. Soc. Hort. Sci. 120: 932-937

    Google Scholar 

  • Hashmi G, Huettel R, Meyer R, Krusberg L & Hammerschlag FA (1997) RAPD analysis of somaclonal variants derived from embryo callus cultures of peach.Plant Cell Rep. 16: 624-627

    CAS  Google Scholar 

  • Haymes KM, Henken B, Davis TM & Van deWeg WE (1997) Identification of RAPD markers linked to a Phytophtora fragariae resistance gene (Rpf1) in the cultivated strawberry. Theor. Appl. Genet. 94: 1097-1101

    CAS  Google Scholar 

  • Haymes KM, Van de Weg WE, Arens P, Maas JL, Vosman B & Den Nijs APM (2000) Developmant or SCAR markers linked to a Phytophtora fragariae resistance gene and their assessmant in European and North American strawberry genotypes. J. Am. Soc. Hort. Sci. 125: 330-339

    CAS  Google Scholar 

  • Heinze B & Schmidt J (1995) Mutation work with somatic embryogenesis in woody plants. In: Jain SM, Gupta K & Newton J (eds) Somatic Embryogenesis in Woody Plants, Vol 1 (pp 379-398). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Hemmat M, Weeden NF, Manganaris AG & Lawson DM (1994) Molecular marker linkage map for apple. J.Hered. 85: 4-11

    PubMed  CAS  Google Scholar 

  • Hemmat M, Weeden NF, Conner PJ & Brown SK (1997) A DNA marker for columnar growth habit in apple contains a simple sequence repeat. J. Am. Soc. Hort. Sci. 122: 347-349

    CAS  Google Scholar 

  • Hemmat M, Weeden NF, Aldwinckle HS & Brown SK (1998) Molecular markers for scab resistance ( Vf ) region in apple. J.Am. Soc. Hort. Sci. 123: 992-996

    CAS  Google Scholar 

  • Henry RJ (1998) Molecular and biochemical characterization of somaclonal variation In: Jain SM, Brar DS & Ahloowalia BS (eds) Somaclonal Variation and Induced Mutations in Crop Improvement (pp 485-499). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Herman EB (ed) (2000) Regeneration and Micropropagation: Techniques, Systems and Media 1997-1999. Agritech Consultants, Shrub Oak

    Google Scholar 

  • Heslot H (1977) Review of main mutagenic compounds. In: Manual on Mutation Breeding. Second edition. IAEA. Vienna. Technical Reports Series No. 119. 51-58

  • Holefors A, Xue ZT & Welander M (1998) Transformation of apple rootstock M26 with the rol A gene and its influence on growth. Plant Sci. 136: 69-78

    CAS  Google Scholar 

  • Holland D, Ben-Hayyim G, Faltin Z, Camoin L, Strosberg AD & Eshdat Y (1993) Molecular characterization of salt-stressassociated protein in citrus: protein and cDNA sequence homology to mammalian glutathione peroxidases.Plant Mol. Biol. 21: 923-927

    PubMed  CAS  Google Scholar 

  • Huettel RN & Hammerschlag FA (1993) Response of peach scion cultivars and rootstocks to Meloidogyne incognita in vitro and in microplots. J. Nematology 25: 472-475

    Google Scholar 

  • IAEA (1986) Conclusions and reccomandations. In: Selection in Mutation Breeding. Proceedings of a Consultant Meeting. Vienna, 21-25 June 1982 (pp 157-169). IAEA, Vienna

    Google Scholar 

  • IAEA (1998) Cellular Biology and Biotechnology Including Mutation Techniques for Creation of New Useful Banana Genotypes. Report Second Research Co-ordinated FAO/IAEA/BADC Meeting. Kuala Lampur, October 1997. IAEA, Vienna.

    Google Scholar 

  • Jain SM (1997) Creation of variability by mutation and tissue culture for improving plants. Acta Hort. 447: 69-77

    Google Scholar 

  • Jain SM, Ahloowalia BS & Veilleux RE (1998a) Somaclonal variation in crop improvement. In: Jain SM, Brar DS & Ahloowalia BS (eds) Somaclonal Variation and Induced Mutations in Crop Improvement (pp 203-218). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Jain SM, Buiatti M, Gimelli F & Saccardo F (1998b) Somaclonal variation in improving ornamental plants. In: Jain SM, Brar DS & Ahloowalia BS (eds) Somaclonal Variation and Induced Mutations in Crop Improvement (pp 81-104). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • James DJ, Mackenzie KAD & Malhotra SB (1987) The induction of hexaploidy in cherry rootstocks using in vitro regeneration techniques. Thoer. Appl. Gen. 73: 589-594

    Google Scholar 

  • James DJ, Passey AJ & Baker SA (1995) Transgenic apples display stable gene expression in the fruit and Mendelian segregation of the transgenes in the R1 progeny. Euphytica 85: 109-112

    Google Scholar 

  • James DJ, Passey AJ, Webster AD, Barbara DJ, Viss P, Dandekar AM & Uratsu SL (1993) Transgenic apples and strawberrys: advances in transformation, introduction of genes for insect resistance and field studies of tissue cultured plants. Acta Hort. 336: 179-184

    Google Scholar 

  • Janick J (1992) Introduction. In: Hammerschlag FA & Litz RE (eds) Biotechnology of Perennial Fruit Crops. (pp. xix-xxi). C.A.B. International, Wallingford, UK

    Google Scholar 

  • Janick J & Moore JN (1975) Advances in fruit breeding. Purdue Univ. Press, West Lafayette

    Google Scholar 

  • Janick J & Moore JN (1996) Fruit Breeding, Vol. I: Tree and Tropical Fruits. John Wiley & Sons, Inc, New York

    Google Scholar 

  • Jones PW & Cassells AC (1995) Criteria for decision making in crop improvement programmes-Technical considerations. Euphytica 85: 465-476

    Google Scholar 

  • Joung H, Korban SS & Skirvin RM (1987) Screening shoot cultures of Malus for cedar-apple rust infection by in vitro inoculation. Plant Disease 71: 1119-1122

    Google Scholar 

  • Karp A (1995) Somaclonal variation as a tool for crop improvement.Euphytica 85: 295-302

    Google Scholar 

  • Karp A (2000) Molecular tools for detecting genetic diversity. Acta Hort. 530: 17-29

    CAS  Google Scholar 

  • Kavanagh TA & Spillane C (1995) Strategies for engineering virus resistance in transgenic plants. Euphytica 85: 149-158

    CAS  Google Scholar 

  • Kikkert JR, Ali GS, StriemMJ, Martens MH, Wallace PG, Molino L & Reisch BI (1997) Genetic engineering of grapevine (Vitis Sp.) for enhancement of disease resistance. Acta Hort. 447: 273-280

    Google Scholar 

  • King GJ (1996) Progress of apple genetic mapping in Europe. HortSci. 31: 1108-1111

    CAS  Google Scholar 

  • King GJ, Alston FH, Brown LM, Chevreau E, Evans KM, Dunemann F, Janse J, Laurens F, Lynn JR, Maliepaard C, Manganaris AG, Roche P, Schmidt H, Tartarini S, Verhaegh J, Vrielink R (1998) Multiple field and glasshouse assessments increase the reliability of linkage mapping of markers flanking the Vf source of scab resistance in apple. Theor. Appl. Genet. 96: 699-708

    CAS  Google Scholar 

  • Ko K, Norelli JL, Brown SK, Aldwinckle HS & Düring K (1999) Galaxy lines transgenic for attacin E and T4 isozyme genes have increased resistance to fire blight. In: Altman A, Ziv M & Izhar S (eds) Plant Biotechnology and in vitro Biology in the 21st Century (pp 507-511). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Koening A (1999) Genetically modified crops in the European Union the regulatory framework and public acceptance. In: Altman A, Ziv M & Izhar S (eds) Plant Biotechnology and in vitro Biology in the 21st Century (pp 751-756). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Krastanova S, Perrin M, Barbier P, Demangeat G, Cornuet P, Bardonnet N, Otten L, Pinck L & Walter B (1995) Transformation of grapevine rootstocks with the coat protein gene of grapevine fanleaf nepovirus. Plant Cell Rep. 14: 550-554

    CAS  Google Scholar 

  • Kuksova VB, Piven NM & Gleba YY (1997) Somaclonal variation and in vitro induced mutagenesis in grapevine. Plant Cell Tiss. Org. Cult. 49: 17-27

    CAS  Google Scholar 

  • Laimar da Câmara Machado M, da Câmara Machado A, Hanzer V, Weiss H, Regner F, Steinkellner H, Mattanovich D, Plail R, Knapp E, Kalthoff B & Katinger (1992) Regeneration of transgenic plants of Prunus armeniaca containing the coat protein gene of plum pox virus.Plant Cell Rep. 11: 25-29

    Google Scholar 

  • Lambert C & Tepfer D (1992) Use of Agrobacterium rhizogenes to create transgenic apple trees having an altered organogenic response to hormones. Theor. Appl. Genet. 85: 105-109

    CAS  Google Scholar 

  • Lane WD, Looney NE & Mage F (1982) A selective tissue culture medium for growth of compact (dwarf) mutants of apple. Theor. Appl. Genet. 61: 219-223

    Google Scholar 

  • Lapins KO (1983) Mutation breeding. In:Moore JN & Janick J (eds) Methods in Fruit Breeding (pp 74-99). Purdue Univ. Press, W. Lafayette

    Google Scholar 

  • Larkin PJ (1998) Introduction. In: Jain SM, Brar DS & Ahloowalia BS (eds) Somaclonal Variation and Induced Mutations in Crop Improvement (pp 3-13). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Larkin PJ & Scowcroft WR (1981) Somaclonal variation-a novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet. 60: 197-214

    Google Scholar 

  • Law CN (1995) Genetic manipulation in plant breeding-prospects and limitations. Euphytica 85: 1-12

    Google Scholar 

  • Lawson DM, Hemmat M & Weeden NF (1995) The use of molecular markers to analyze the inheritance of morphological and developmental traits in apple. J. Amer. Soc. Hort. Sci. 120: 532-537

    Google Scholar 

  • Le Gall O, Torregrosa L, Danglot Y, Candresse T & Bouquet A (1994) Agrobacterium-mediated genetic transformation of grapevine somatic embryos and regeneration of transgenic plants expressing the coat protein of grapevine chrome mosaic nepovirus (GCMV).Plant Sci. 102: 161-170

    CAS  Google Scholar 

  • Leblay C, Chevreau E, Brisset MN & Paulin JP (1993) In vitro obtention and selection of pear mutants resistant to fire blight (Erwinia amylovora). Proceedings of FAO/IAEA Research Coordination Meeting 'Induced mutations and in vitro culture techniques for improving crop plant resistance to diseases'. Grünbach, D, October 7-11, 1991. (pp 27-36)

  • Lima da Silva A & Doazan JP (1995) Gamma ray-mutagenesis on grapevine rootstocks cultivated in vitro. J. Int. Sci. de la Vigne et du Vin. 29: 1-9

    Google Scholar 

  • Litz RE, Mathews WH, Hendrix RC & Yurgalevitch C (1991) Mango somatic cell genetics. Acta Hort. 291: 133-140

    Google Scholar 

  • Lodhi MA, Daly MJ, Ye GN, Weeden NF & Reisch BI (1995) A molecular marker based linkage map of Vitis. Genome 38: 786-794

    PubMed  CAS  Google Scholar 

  • Lu ZX, Sosinskki B, Reighard GL, Baird WV & Abbott AG (1998) Construction of a genetic linkage map and identification of AFLP markers for resistance to root-knot nematodes in peach rootstocks. Genome 41: 199-204

    CAS  Google Scholar 

  • Lu ZX, Sossey-Alaoui K, Reighard GL, Baird WV & Abbott AG (1998) Development and caracterization of a codominant marker linked to root-knot nematode resistance, and its application to peach rootstock breeding. Theor. Appl. Genet. 99: 115-122

    Google Scholar 

  • Lyrene PM & Perry JL (1982) Production and selection of blueberry polyploids in vitro. J. Hered. 73: 237-243

    Google Scholar 

  • Mak C, Ho YW & Tan YP (1998) Micropropagation and mutation breeding techniques for the improvement of bananas. Acta Hort. 461: 219-223

    Google Scholar 

  • Maliepaard C, Alston FH, van Arkel G, Brown LM, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P, Van Heusden AW, Janse J, Laurens F, Lynn JR, Manganaris AG, Den Nijs APM, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh JJ, Vrielink-van Ginkel M & King GJ (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor. Appl. Genet. 97: 60-73

    CAS  Google Scholar 

  • Malone RP & Dix PJ (1990) Mutagenesis and triazine herbicide effects in strawberry shoot cultures. J. Exp. Bot. 41: 463-469

    CAS  Google Scholar 

  • Maluszynski M, Ahloowalia BS & Sigurbjörnsson B (1995) Application of in vivo and in vitro mutation techniques for crop improvement. Euphytica 85: 303-315

    Google Scholar 

  • Maluszynski M, Szarenko I & Sigurbjörnsson B (1995) Haploidy and mutation techniques. In: Jain SM, Sopory SK & Veilleux RE (eds) In vitro Haploid Production in Higher Plants, Vol 1 (pp 67-930). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Manganaris AG, Alston FH, Weeden NF, Aldwinckle HS, Gustafson HL & Brown SK (1994) Isozyme locus Pgm-1 is tightly linked to a gene (Vf ) for scab resistance in apple. J. Amer. Soc. Hort. Sci. 119: 1286-1288

    CAS  Google Scholar 

  • Marcotrigiano M (1986) Origin of adventitious shoots regenerated from cultured tobacco leaf tissue. Amer. J. Bot. 73: 1541-1547

    CAS  Google Scholar 

  • Marino G & Battistini S (1990) Leaf-callus growth, shoot regeneration and somaclonal variation in Actinidia deliciosa: effect of medium pH. Acta Hort. 280: 37-44

    Google Scholar 

  • Marino G & Bertazza G (1998) Selection-pressure effects of medium pH during regeneration on successive performances of leaf-derived 'Tomuri' and 'Hayward' kiwifruit (Actinidia deliciosa) somaclones cultured on proliferation culture media with variable pH. J. Hort. Sci. Biotechnol. 73: 664-669

    Google Scholar 

  • Marino G, Bertazza G & Buscaroli C (1998) In vivo growth and tolerance to lime-induced iron chlorosis of leaf-derived cvs. Tomuri and Hayward kiwifruit (Actinidia deliciosa) somaclones. J. Hort. Sci. Biotechnol. 73: 670-675

    Google Scholar 

  • Marino G, Beghelli S, Rombolà AD & Cabrini L (2000) In vitro performance at high culture pH and in vivo responses to Fe-deficiency of leaf-derived quince BA29 (Cydonia oblonga) somaclones regenerated at variable pH. J. Hort. Sci. Biotechnol. 75: 433-440

    CAS  Google Scholar 

  • Markussen T, Kruger H, Schmidt H & Dunneman F (1995) Identification of PCR-based markers linked to the powdery-mildewresistance gene P1(1) form Malus robusta in cultivated apple. Plant Breeding 114: 530-534

    CAS  Google Scholar 

  • Martelli G, Greco I, Mezzetti B & Rosati P (1993) Isozymic analysis of somaclonal variation among regenerants from apple rootstock leaf tissue. Acta Hort. 336: 381-387

    Google Scholar 

  • Masuda T & Yoshioka T (1997) In vitro selection of a mutant resistant to Alternaria blotch disease in 'Indo' apple. Tech. News Inst. Rad. Breed. 56: 1-2

    Google Scholar 

  • Masuda T, Yoshioka T & Inoue K (1994) Selection of mutants resistant to black spot disease using the AK-toxin in Japanese pears irradiated with gamma-rays. In: Gamma Field Symposia n. 33. Mutation Breeding with Novel Selection Techniques (pp 91-100). NIAR MAFF, Ibaraki

    Google Scholar 

  • Masuda T, Yoshioka T, Inoue K, Murata K, Kitagawa K, Tabira H, Yoshida A, Kotobuki K & Sanada T (1997) Selection of mutants resistant to black spot disease by chronic irradiation of gammarays in Japanese pear 'Osanijisseiki'. J. Japan. Soc. Hort. Sci. 66: 85-92

    Google Scholar 

  • Mathews H, WagonerW, Cohen C, Kellogg J & Bestwick R (1995a) Efficient genetic transformation of red raspberry Rubus ideaus L. Plant Cell Rep. 14: 471-476

    CAS  Google Scholar 

  • Mathews H, Wagoner W, Kellogg J & Bestwick R (1995b) Genetic transformation of strawberry: stable integration of a gene to control biosynthesis of ethylene. In Vitro Cell. Dev. Biol. 31: 36-43

    CAS  Google Scholar 

  • Matsumoto K & Yamaguchi H (1990) Selection of aluminiumtolerant variants from irradiated protocorm-like bodies in banana. Trop. Agric. 67: 229-232

    CAS  Google Scholar 

  • Matsumoto K & Yamaguchi H (1991) Induction and selection of aluminium tolerance in the banana. In: Plant Mutation Breeding for Crop improvement, Vol 2 (pp 240-246). IAEA, Vienna

    Google Scholar 

  • Matsumoto K, Barbosa ML, Souza LAC & Teixeira JB (1995) Race 1 fusarium wilt tolerance on banana plants selected by fusaric acid. Euphytica 84: 67-71

    Google Scholar 

  • Mauro MC, Strefeler M, Weeden NF & Reish BI (1992) Genetic analysis of restriction fragment length polymorphisms in Vitis. J. Hered. 83: 18-21

    CAS  Google Scholar 

  • McClintock B (1984) The significance of responses of genome to change.Science 226: 792-801

    PubMed  CAS  Google Scholar 

  • McGranahan GH, Leslie CA, Uratsu S & Dandekar AM (1988) Agrobacterium-mediated transformation of walnut somatic embryos and regeneration of transgenic plants. Bio/Technology 6: 800-804

    CAS  Google Scholar 

  • McNicol RJ & Graham J (1992) Temperate small fruits. In: Hammerschlag FA & Litz RE (eds.) Biotechnology of Perennial Fruit Crops (pp 303-321). CAB International, Wallingford

    Google Scholar 

  • McPheeters K & Skirvin RM (1989) Somaclonal variation among ex vitro 'Thorless Evergreen' trailing blackberry. Euphytica 42: 155-162

    Google Scholar 

  • Mehlenbacher SA (1995) Classical and molecular approaches to breeding fruit and nut Crops for disease resistance. HortSci. 30: 466-477

    Google Scholar 

  • Meyer P (1995) Variation of transgene expression in plants. Euphytica 85: 359-366

    CAS  Google Scholar 

  • Michelemore R (1995) Molecular approaches to manipulation of disease resistance genes. Annu. Rev. Phytopathol.. 15: 393-427

    Google Scholar 

  • Miflin B (2000) Crop improvement in the 21st century. J. Exp. Bot. 51: 1-8

    PubMed  CAS  Google Scholar 

  • Moore GA, Gutierrez EA, Jacono A, Jacono C, McCaffery M & Cline K (1993) Production of transgenic citrus plants expressing the citrus tristeza virus coat protein gene. HortSci. 28: 512-515

    Google Scholar 

  • Mourgues F, BrissetMN & Chevreau E (1998) Strategies to improve plant resistance to bacterial diseases through genetic engineering.TIBTECH 16: 203-210

    CAS  Google Scholar 

  • Muralitharan MS, van Steveninck FM & Chandler SF (1990) Growth characteristics and ion contents of non-selected and salt-selected callus lines of highbush blueberry (Vaccinium corymbosum) cultivars Blue Crop and Denise Blue.Plant Cell Rep. 9: 151-155

    CAS  Google Scholar 

  • Murashige T & Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culttures. Physiol. Plant. 15: 473-497

    CAS  Google Scholar 

  • Nadel B & Spiegel-Roy P (1987) Selection of Citrus limon culture variants resistant to the mal secco toxin. Plant Sci. 53: 177-182

    CAS  Google Scholar 

  • Nakamura Y & Kobayashi S (1994) DNA restriction fragment length variability in Diospyros kaki and related Diospyros species. HortSci. 29: 809-811

    CAS  Google Scholar 

  • Negri P & Mazzara M (1996) Trasformazione delle cultivar di melo ‘Gala’ con il gene rolB di Agrobacterium rhizogenes. Giornate Scientifiche SOI, Erice, Italy. Abstract Book 13-14

    Google Scholar 

  • Negri P, Magnanini E, Cantoni L, Berardi G & Sansavini S (1998) Piante arboree transgeniche: prime esperienze sul trasferimento di geni per il controllo dell'habitus vegetativo. Frutticoltura 5: 91-98

    Google Scholar 

  • Neville PA, Nayana NB & Tanguay M (1998) Mutagenic effects of acute gamma irradiation on miniature roses: target theory approach. HortSci. 33: 127-129

    Google Scholar 

  • Norelli JL, Aldwinckle HS, Destefano-Beltran L & Jaynes JM (1994) Transgenic 'Malling 26' (M7) apple expressing the attacin E gene has increased resistance to Erwinia amylovora. In: Schmidt H & Kellerhals E (eds) Progress in Temperate Fruit Breeding. (pp 333-338) Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Novak FJ (1991) In vitro mutation system for crop improvement. In: Plant Mutation Breeding for Crop Improvement, Vol 2 (pp 327-342). IAEA, Vienna

    Google Scholar 

  • Novak FJ, Afza R, van Duren M & Omar MS (1990) Mutation induction by gamma irradiation of in vitro cultured shoot-tips of banana and plantain (Musa cvs.) Tropic. Agric. 67: 21-28

    Google Scholar 

  • Oliveira CM, Mota M, Monte-Corvo L Goulao L & Silva DM (1999) Molecular typing of Pyrus based on RAPD markers. Scientia Hort. 79: 163-174

    CAS  Google Scholar 

  • Omar MS, Novak FJ & Brunner H (1989) In vitro action of ethylmethanesulphonate on banana shoot tips. Scientia Hort. 40: 283-295

    CAS  Google Scholar 

  • Orlando R, Magro P & Rugini E (1997) Pectic enzymes as a selective pressure tool for in vitro recovery of strawberry plants with fungal disease resistance. Plant Cell Rep. 16: 272-276

    CAS  Google Scholar 

  • Ortiz A, Renaud R, Calzada I & Ritter E (1997) Analysis of plum cultivars with RAPD markers. J. Hort. Sci. 72: 1-9

    CAS  Google Scholar 

  • Palonen P & Buszard D (1997) Screening strawberry cultivars for cold hardiness in vitro. Acta Hort. 439: 217-220

    Google Scholar 

  • Palonen P & Buszard D (1998) In vitro screening for cold hardiness of raspberry cultivars. Plant Cell Tiss. Org. Cult. 53: 213-216

    CAS  Google Scholar 

  • Pérez G, Isidron M, Arias E, Pérez S, Gonzalez J & Nieves N (1998) Phenotypic, biochemical and cytogenetic characterization of pineapple plants obtained from somaclonal variation and mutagenesis. Acta Hort. 425: 221-232

    Google Scholar 

  • Perry JL & Lyrene PM (1984) In vitro induction of tetraploidy in Vaccinium darrowi, V. elliotti and V. darrowi × V. elliotti with colchicine treatment. J. Amer. Soc. Hort. Sci. 109: 4-6

    Google Scholar 

  • Phillips RL, Kaeppler SM & Olhoft P (1994) Genetic instability of plant tissue cultures: breakdown of normal controls.Proc. Natl. Acad. Sci. USA. 91: 5222-5226

    PubMed  CAS  Google Scholar 

  • Pinet-Leblay C, Turpin FX & Chevreau E (1992) Effect of gamma and ultraviolet irradiation on adventitious regeneration from in vitro cultured pear leaves. Euphytica. 62: 225-233

    Google Scholar 

  • Piqueras A, Hernandez JA, Olmos E, Hellín E & Sevilla F (1996) Changes in antioxidant enzymes and organic solutes associated with adaptation of citrus cells to salt stress. Plant Cell Tiss. Org. Cult. 45: 53-60

    CAS  Google Scholar 

  • Porceddu E (1999) Agricultural production and natural resources. In: Scarascia Mugnozza GT, Porceddu E & Pagnotta MA (eds) Genetic and Breeding for Crop Quality and Resistance (pp 377-396). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Predieri S (1998a). Compact pears obtained through in vitro mutagenesis. Acta Hort. 475: 93-98

    Google Scholar 

  • Predieri S (1998b) Due nuove cultivar di pero a struttura compatta: ‘Abate Light’ e ‘Conference Light'. Frutticoltura 9(15): 42-43

    Google Scholar 

  • Predieri S & Fasolo F (1989) High-frequency shoot regeneration from leaves of the apple rootstock M26 (Malus pumila Mill.). Plant Cell Tiss. Org. Cult. 17: 133-142

    Google Scholar 

  • Predieri S & Govoni M (1998) In vitro propagation of compact pear clones. Acta Hort. 475: 127-132

    Google Scholar 

  • Predieri S & Gatti E (2000) Effects of gamma radiation on plum (Prunus salicina Lindl.) 'shiro'. Adv. Hort. Sci. 14: 215-223

    Google Scholar 

  • Predieri S & Zimmerman RH (2001) Pear mutagenesis: in vitro treatment with gamma-rays and field selection for productivity and fruit traits.Euphytica 3: 217-227

    Google Scholar 

  • Predieri S, Rosati P & Fornasini B (1986) Mutagenesi sul pero in micropropagazione: messa a punto del metodo. Riv. Ortoflorofrutt. It. 70: 369-379

    Google Scholar 

  • Predieri S, Fasolo F & Filiti N (1989) In vitro colchicine treatments on strawberry. (Fragaria × ananassa Duch.) shoots Acta Hort. 265: 191-194

    Google Scholar 

  • Predieri S, Magli M & Zimmerman RH (1997) Pear mutagenesis: in vitro treatment with gamma-rays and field selection for vegetative traits. Euphytica 93: 227-237

    Google Scholar 

  • Predieri S, Bertazza G & Gennari F (1998) Pear cv. Bartlett mutants selection for high fruit quality: analysis of soluble sugars and organic acids. Atti IV Giornate Scientifiche SOI, Sanremo, 1–3 Aprile 1998. (pp 65-66)

  • Rajapakse S, Belthoff LE, He G, Estager AE, Scorza R, Verde I, Ballard RE, Baird WV, Callahan A, Monet R & Abbott AG (1995) Genetic linkage mapping in peach using morphological, RFLP and RAPD markers.Theor. Appl. Genet. 90: 503-510

    CAS  Google Scholar 

  • Rajashekar G, Palmquist D & Ledbetter CA (1995) In vitro screening procedure for osmotic tolerance in Prunus. Plant Cell Tiss. Org. Cult. 41: 159-164

    Google Scholar 

  • Ramulu KS, Dijkhuis P, Pereira A, Angenent GC, Van Lookerer Campagne MM & Dons JJM (1998) EMS and transposon mutagenesis for the isolation of the apomictic mutants in plants. In: Jain SM, Brar DS & Ahloowalia BS (eds) Somaclonal Variation and Induced Mutations in Crop Improvement (pp 379-400). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Ravelonandro M, Scorza R, Bachelier JC, Labonne G, Levy L, Damsteegt V, Callahan AM & Dunez J (1997) Resistance of transgenic Prunus domestica to plum pox virus infection. Plant Dis. 81: 1231-1235

    CAS  Google Scholar 

  • Remotti PC (1998) Somaclonal variation and in vitro selection for crop improvement. In: Jain SM, Brar DS & Ahloowalia BS (eds) Somaclonal Variation and Induced Mutations in Crop Improvement (pp 169-201). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Remy S, Buyens A, Cammue BPA, Swennen R & Sági L (1998) Production of transgenic banana plants expressing antifungal proteins. Acta Hort. 490: 433-436

    CAS  Google Scholar 

  • Reynoird JP, Morgues F, Norelli J, Aldwinkckle HS, Brisset MN & Chevreau E (1999) First evidence for improved resistance to fire blight in transgenic pear expressing the attacin E gene from Hyaloptera cecropia Plant Sci. 149: 23-31

    CAS  Google Scholar 

  • Robinson J (1999) Ethics and transgenic crops: a review. Elect. J. Biotech. 2(2): http: //ejb.ucv.cl/content/vol2/issue2/full/3

  • Roche P, Alston FH, Maliepaard C, Evans KM, Vrielink R, Dunemann F, Markussen T, Tartarini S, Brown LM, Ryder C & King GJ (1997) RFLP and RAPD markers linked to the rosy leaf curling aphid resistance gene (SdI) in apple.Theor. Appl. Genet. 94: 526-533

    Google Scholar 

  • Rosati P, Gaggioli D, Mezzetti B & Lovato A (1989) Screening for Phytophthora cactorum resistance with culture filtrates of the fungus. Acta Hort. 265: 123-128

    Google Scholar 

  • Rosati P, Mezzetti B, Ancherani M, Foscolo S, Predieri S & Fasolo F (1990a) In vitro selection of apple rootstock somaclones with Phytophthora cactorum culture filtrate. Acta Hort. 280: 409-416

    Google Scholar 

  • Rosati P, Silvestroni O, Intrieri C & Murri G (1990b) Effects of in vitro gamma irradiation on two grapevine cultivars (Vitis vinifera L.) 5th int. Symp. Grape Breed. S.Martin FRG. Sept. 1989. Vitis (special issue): 471-477

  • Roux NS (1998) Improved methods to increase diversity in Musa using mutation and tissue culture techniques. In: Cellular Biology and Biotechnology Including Mutation Techniques for Creation of New Useful Banana Genotypes. Report Second Research Coordinated FAO/IAEA/BADC Meeting. Kuala Lampur, October 1997 (pp 49-56). IAEA, Vienna

    Google Scholar 

  • Roux NS, Dolezel J & Zapata-Arias FJ (1999) Cytochimera dissociation through shoot-tip culture of mixoploid bananas. In: Altman A, Ziv M & Izhar S (eds) Plant Biotechnology and In Vitro Biology in the 21st Century (pp 255-258). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Rowland LJ & Levi A (1994) RAPD-based genetic map of blueberry derived from a cross between diploid species (Vaccinium darrowi and V. ellioti). Theor. Appl. Genet. 82: 627-632

    Google Scholar 

  • Rugini E, Pellegrineschi A, Mencuccini M & Mariotti D (1991) Increase of rooting ability in woody species kiwi (Actinidia deliciosa A. Chev.) by transformation with Agrobacterium rhizogenes rol genes. Plant Cell Rep. 10: 291-295

    CAS  Google Scholar 

  • Sala F, Arencibia A, Castiglione S, Christou P, Zheng Y & Han Y (1999) Molecular and field analysis of somaclonal variation in transgenic plants. In:Altman A, Ziv M & Izhar S (eds) Plant Biotechnology and In Vitro Biology in the 21st Century (pp 259-262). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Salamini F (1999) Where do we go from this point. In: Scarascia Mugnozza GT, Porceddu E & Pagnotta MA (eds) Genetic and Breeding for Crop Quality and Resistance (pp 397-417). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Sammarcelli-Olliraut F & Legave JM (1991) In vitro irradiation of the cultivar Hayward. Acta Hort. 297: 115-122

    Google Scholar 

  • Sanada T & Amano E (1998) Induced mutation in fruit trees. In: Somaclonal Variation and Induced Mutations in Crop Improvement. In: Jain SM, Brar DS & Ahloowalia BS (eds) Somaclonal Variation and Induced Mutations in Crop Improvement (pp 401-409). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Sarwar M, Skirvin RM, Kushad M & Norton MA (1998) Selecting dwarf apple (Malus × domestica Borkh.) trees in vitro: multiple cytokinin tolerance expressed among three strains of 'McIntosh' that differ in their growth habit under field conditions.Plant Cell Tiss. Org. Cult. 54: 71-76

    CAS  Google Scholar 

  • SAS/INSIGHT (1993) User's Guide, Version 6, Sas Institute Inc., Cary, NC, Fit Analyses. (pp 397-454)

  • Schum A & Preil W (1998) Induced mutations in ornamentals. In: Jain SM, Brar DS & Ahloowalia BS (eds) Somaclonal Variation and Induced Mutations in Crop Improvement (pp 333-366). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Scorza R & Cordts JM (1989) Differential sensitivity of ‘Compact Redhaven’ and ‘Redhaven’ peach shoot tips to BA in vitro. HortSci. 24: 334-336

    CAS  Google Scholar 

  • Scorza R, Morgens PH, Cordts JM, Cohen RA, Mante S Lloyd AD & Callahan AM (1990) The potential for genetic manipulation of peach fruit development and quality through directed gene transfer. Acta Hort. 503-508

  • Scorza R, Ravelonardo M, Callahan AM, Cordts J, Fuchs M, Dunez J & Gonsalves D (1994) Transgenic plums (Prunus domestica L.) express the plum pox virus coat protein gene. Plant Cell Rep. 14: 18-22

    CAS  Google Scholar 

  • Scorza R, Levy L, Damsteeg V, Yepes LM, Cordts J, Hadidi A, Slightom J & Gonsalves D (1995) Transformation of plum with the papaya ringspot coat protein gene and reaction of transgenic plants to plum pox virus.J. Amer. Soc. Hort. Sci. 120: 943-952

    Google Scholar 

  • Sefc KM, Regner F, Glossl J & Steinkellner H (1998) Genotyping of grapevine and rootstock cultivars using microsatellite markers. Vitis 37: 15-20

    Google Scholar 

  • Serres R & Stang E (1992) Gene transfer using electric discharge particle bombardment and recovery of transformed cranberry plants. J. Amer. Soc. Hort. Sci. 117: 174-180

    CAS  Google Scholar 

  • Sharon D, Hillel J, Mhameed S, Cregan PB, Lahav E & Lavi U (1998) Association between DNA markers and loci controlling avocado traits. J Amer. Soc. Hort. Sci. 123: 1016-1022

    CAS  Google Scholar 

  • Shen X-S, Wan J-Z, Luo W-Y & Ding X-L (1990) Preliminary results of using in vitro axillary and adventitious buds in mutation breeding of Chinese goosberry. Euphytica 49: 77-82

    Google Scholar 

  • Shi Y, Wang Q, Zhou G & Wang J (1992) Genome engineering of apple in vitro. Acta Hort. 317: 13-21

    Google Scholar 

  • Shoseyov O, Tsabary G & Reuveni O (1998) Detection of dwarf somaclones of banana cultivars (Musa) by RAPD markers. In: Jain SM, Brar DS & Ahloowalia BS (eds) Somaclonal Variation and Induced Mutations in Crop Improvement (pp 595-601). Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Sigurbjörnsson B (1977) Introduction: mutations in plant breeding programmes. In: Manual on Mutation Breeding. Second edition. Technical Reports Series No.119. (pp 1-6). IAEA, Vienna

    Google Scholar 

  • Singh Z & Sansavini S (1998) Genetic transformation and fruit improvement. In: Janick J (ed) Plant Breeding Reviews, Vol. 16 (pp 88-134). John Wiley & Sons Inc., New York

    Google Scholar 

  • Skeene KGM & Barlass M (1988) Response to NaCl of grapevines regenerated from multiple-shoot cultures exhibiting mild salt tolerance in vitro. Amer. J. Enol. Viticult. 39: 125-128

    Google Scholar 

  • Skirvin RM (1978) Natural and induced variation in tissue culture. Euphytica 27: 241-266

    Google Scholar 

  • Skirvin RM, McPheeters KD & Norton M (1994) Sources and frequency of somaclonal variation. HortSci. 29: 1232-1246

    Google Scholar 

  • Spiegel-Roy P (1990) Economic and agricultural impact of mutation breeding in fruit trees.Mutation Breeding Review 5: 1-26

    Google Scholar 

  • Spina P, Mannino P, Reforgiato Recupero G & Starrantino A (1991) Use of mutagenesis at Istituto Sperimentale per l'Agrumicoltura, Acireale. In: Plant Mutation Breeding for Crop Improvement, Vol 1 (pp 257-261). IAEA, Vienna

    Google Scholar 

  • Stockinger EJ, Mulinix CA, Long CM, Brettin TS & Iezzoni AF (1996) A linkage map of sweet cherry based on RAPD analysis of a microspore-derived callus culture population. J. Hered. 87: 214-218

    PubMed  CAS  Google Scholar 

  • Striem MJ, Ben-Hayyim G & Spiegel-Roy P (1996) Identifying molecular genetic markers associated with seedlessness in grape.J. Amer. Soc. Hort. Sci. 121: 758-763

    CAS  Google Scholar 

  • Takahashi H (1993) Breeding of strawberry cultivars resistant to Alternaria black spot of strawberry (Alternaria alternata strawberry pathotype) Bull. Akita Pref. Coll. Agric. 19: 1-44 (Curr. Cont. Abstract)

    Google Scholar 

  • Tal M (1993) In vitro methodology for increasing salt tolerance in crop plants. Acta Hort. 336: 69-78

    Google Scholar 

  • Tan YP, Ho YW, Mak C & Rusli I (1993) 'Fatom-1' an early flowering mutant derived from mutation induction of Grand nain, a cavendish banana. Mutation Breeding Newsletters 40: 5-6

    Google Scholar 

  • Tao R, Dandekar AM, Uratsu SL, Vail VP & Tebbets JS (1997) Engineering genetic resistance against insects in Japanese persimmon using the cryIA (c) gene of Bacillus thuringensis. J.Am.Soc. Hort. Sci. 122: 764-771

    CAS  Google Scholar 

  • Tartarini S (1996) RAPD markers linked to the Vf gene for scab resistance in apple. Theor. Appl. Genet. 92: 803-810

    CAS  Google Scholar 

  • Tautz D (1989) Hypervariability of simple sequence repeats as a general source of polymorphic DNA markers. Nucl. Acids Res. 17: 6463-6471

    PubMed  CAS  Google Scholar 

  • Teulat B, Aldam C, Trehin R, Lebrun P, Barker JHA, Arnold GM, Karp A, Baudouin L & Rognon F (2000) An analysis of genetic diversity in coconut (Cocos nucifera) populations from across the geographic range using sequence-tagged microsatellites (SSRs) and AFLPs. Theor. Appl. Genet. 100: 764-771

    CAS  Google Scholar 

  • Theiler-Hedtrich R (1990) Induction of dwarf F 12/1 cherry rootstocks by in vitro mutagenesis. Acta Hort. 280: 367-374

    Google Scholar 

  • Thomas MR & Scott NS (1993) Microsatellite repeats in grapevine reveal DNA polymorphysms when analysed as sequence-tagged sites. Theor. Appl. Genet. 86: 985-990

    CAS  Google Scholar 

  • Tokuhisa JG, Feldmann KA, LaBrie ST & Browse J (1997) Mutational analysis of chilling tolerance in plants. Plant Cell. Environ. 20: 1391-1400

    Google Scholar 

  • Toyoda H, Horikoshi K, Yamano Y & Ouchi S (1991) Selection of Fusarium wilt disease resistance from regenerant derived from callus of strawberry. Plant Cell Rep. 10: 167-170

    Google Scholar 

  • Van den Bulk RW (1991) Application of cell and tissue culture and in vitro selection for disease resistance breeding-a review. Euphytica 56: 269-285

    Google Scholar 

  • Van Duren M, Morpurgo R, Dolezel J & Afza R (1996) Induction and verification of autotetraploids in diploid banana (Musa acuminata) by in vitro techniques.Euphytica 88: 25-34

    Google Scholar 

  • Van Harten AM (1998) Mutation Breeding: Theory and Practical Applications. Cambridge Univ. Press, Cambridge

    Google Scholar 

  • Van Houwelingen A, Souer E, Spelt K, Kloos D, Mol J & Koes R (1998) Analysis of flower pigmentation mutants generated by random transposon mutagenesis in Petunia hybrida. Plant J. 13: 39-50

    PubMed  CAS  Google Scholar 

  • Veilleux RE & Johnson AAT (1998) Somaclonal variation: molecular analysis, transformation interaction, and utilization. In: Janick J (ed) Plant Breeding Reviews, Vol 16 (pp 229-267).John Wiley & Sons. Inc., New York

    Google Scholar 

  • Virscek-Marn M, Bohanec B & Javornik B (1999) Adventitious shoot regeneration from apple leaves-Optimisation of the protocol and assessment of genetic variation among regenerants. Phyton 39: 61-70

    Google Scholar 

  • Viruel MA, Messeguer R, Vicente MCD, Garcia-Mas J, Puidomènech P, Vargas F & Arùs P (1995) A linkage map with RFLP and isozyme markers for almond. Theor. Appl. Genet. 91: 964-971

    CAS  Google Scholar 

  • Viseur J (1990) Evaluation of fire blight resistance of somaclonal variants obtained from the pear cultivar 'Durondeau'. Acta Hort. 273: 275-284

    Google Scholar 

  • Viseur J & Tapia y Figueroa M(1987) In vitro co-culture as a tool for the evaluation of fireblight resistance in pears and apples. Acta Hort. 217: 273-282

    Google Scholar 

  • Visser T, Verhaegh JJ & De Vries D (1971) Pre-selection of compact mutants induced by X-ray treatment in apple and pear. Euphytica 20: 195-207

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Rijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M & Zabeau M (1995) AFLP: a new technique for DNA fingerprinting.Nucl. Acids Res 23: 4407-4414

    PubMed  CAS  Google Scholar 

  • Walbot V (1992) Strategies for mutagenesis and gene cloning using transposon tagging and T-DNA insertional mutagenesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 49-82

    CAS  Google Scholar 

  • Walther F & Sauer A (1985) Analysis of radiosensitivity-a basic requirement for in vitro somatic mutagenesis.I. Prunus avium L. Acta Hort. 169: 97-104

    Google Scholar 

  • Watt K, Graham J, Gordon SC, Woodhead M & McNicol RJ (1999) Current and future transgenic control strategies to vine weevil and other insect resistance in strawberry. J. Hort. Sci. Biotech. 74: 409-421

    CAS  Google Scholar 

  • Webster AD, Sparks TR & Belcher A (1986) The influence of micropropagation and chemical mutagens on the growth and precocity of Cox's Orange Pippin and Bramley's seedling apple. Acta Hort. 180: 25-34

    Google Scholar 

  • Weeden NF, Hemmat M, Lawson DM, Lodhi M, Bell RL, Manganaris AG, Reisch BI, Brown SK & Ye G-N (1994) Development and application of molecular marker linkage maps in woody fruit crops. Euphytica 77: 71-75

    Google Scholar 

  • Weising K, Khan F, Kaemmer D, Fisher D & Kahl (1998) Microsatellite-based molecular markers and their application for genome analysys in Musa cultivar and wild species. Cellular Biology and Biotechnology Including Mutation Techniques for Creation of New Useful Banana Genotypes. Report Second Research Co-ordinated FAO/IAEA/BADC Meeting. Kuala Lampur, October 1997 (pp 7-9). IAEA, Vienna

    Google Scholar 

  • Welander M, Pawlicki N, Holefors A & Wilson F (1998) Genetic transformation of the apple rootstock M26 with the Rol B gene and its influence on rooting. J. Plant Physiol. 153: 371-380

    CAS  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA & Tingey SV (1990) DNA polymorphisms amplified by arbirtary primers are useful as genetic markers. Nucl. Acids Res. 18: 6531-6535

    PubMed  CAS  Google Scholar 

  • Winicov I & Bastola DR (1997) Salt tolerance in crop plants: new approaches through tissue culture and gene regulation. Acta Physiol. Plant. 19: 435-449

    CAS  Google Scholar 

  • Wu FF, Siddiqui SH, Heinz DJ & Ladds SL (1978) Evaluation of mathematical methods for predicting optimum dose of gamma radiation in sugar cane. Environ. Exp. Bot. 18: 95-98

    Google Scholar 

  • Yang HY & Kruger J (1994) Identification of a RAPD marker to the Vf gene for scab resistance in apples. Plant Breeding 112: 323-328

    Google Scholar 

  • Yang H & Schmidt H (1994) Selection of a mutant from adventitious shoots formed in X ray treated cherry leaves and differentiation of standard and mutant with RAPDs. Euphytica 77: 89-92

    Google Scholar 

  • Yang HY, Korban SS, Kruger J & Schmidt H (1997a) A randomly amplified polymorphyc DNA (RAPD) marker tightly linked to the scab-resistance gene Vf in apple. J. Amer. Soc. Hort. Sci. 122: 47-52

    CAS  Google Scholar 

  • Yang HY, Korban SS, Kruger J & Schmidt H (1997b) The use of a modified bulk segregant analysis to identify a molecular marker linked to a scab resistance gene in apple. Euphytica 94: 175-182

    Google Scholar 

  • Yao, JL, Cohen D, Atkinson R, Richardson K & Morris B (1995) Regeneration of transgenic plants from the commercial apple cultivar Royal Gala. Plant Cell Rep. 14: 407-412

    CAS  Google Scholar 

  • Yao JL, Cohen D, Van den Brink R & Morris B (1999) Assessment of expression and inheritance patterns of three transgenes with the aid of techniques for promoting rapid flowering of transgenic apple trees. Plant Cell Rep. 18: 727-732

    CAS  Google Scholar 

  • Yepes LM & Aldwinckle HS (1993) Pathogenesis of Venturia inaequalis on shoot-tip cultures and on greenhouse-grown apple cultivars. Phytopathology. 83: 1155-1162

    Google Scholar 

  • Yoshioka T, Masuda T, Kotobuki K, Sanada T & Ito Y (1999) Gamma-ray-induced mutation breeding in fruit trees: Breeding of mutant cultivars resistant to black spot disease in Japanese pear. Jpn. Agric. Res. Q. 33: 227-234 (CC/AB & ES Abstract)

    Google Scholar 

  • Zatylny AM, Proctor JTA & Sullivan JA (1993) Screening red raspberry for cold hardiness in vitro. HortScience 28: 740-741

    Google Scholar 

  • Zatylny AM, Proctor JTA & Sullivan JA (1996) Assessing cold hardiness of raspberry genotypes in the laboratory and field. J. Am. Soc.Hort. Sci. 121: 495-500

    Google Scholar 

  • Zhang YX & Lespinasse Y (1992) Haploidy. In: Hammerschlag FA & Litz RE (eds.) Biotechnology of Perennial Fruit Crops. C.A.B. International, Wallingford, UK. (pp 57-76).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Predieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Predieri, S. Mutation induction and tissue culture in improving fruits. Plant Cell, Tissue and Organ Culture 64, 185–210 (2001). https://doi.org/10.1023/A:1010623203554

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010623203554

Keywords

Navigation