Skip to main content
Log in

Genetic enrichment of cereal crops via alien gene transfer: New challenges

  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

Genetic improvement of crops has traditionally been achieved through sexual hybridization between related species, which has resulted in numerous cultivars with high yields and superior agronomic performance. Conventional plant breeding, sometimes combined with classical cytogenetic techniques, continues to be the main method of cereal crop improvement. More recently, through the introduction of new tools of biotechnology, crossing barriers have been overcome, and genes from unrelated sources have become available to be introduced asexually into plants. Cereal crops were initially difficult to genetically engineer, mainly due to their recalcitrance to in vitro regeneration and their resistance to Agrobacterium infection. Systematic screening of cultivars and explant tissues for regeneration potential, development of various DNA delivery methods and optimization of gene expression cassettes have produced transformation protocols for the major cereals, although some elite cultivars still remain recalcitrant to transformation. Most of the transgenic cereals developed for commercial purpose exhibit herbicide and/or insect resistance; traits that are often controlled by a single gene. In recent years, more complex traits, such as dough functionality in wheat and nutritional quality of rice have been improved by the use of biotechnology. The current challenges for genetic engineering of plants will be to understand and control factors causing transgene silencing, instability and rearrangement, which are often seen in transgenic plants and highly undesirable in lines to be used for crop development. Further improvement of current cereal cultivars is expected to benefit greatly from information emerging from the areas of genomics, proteomics and bioinformatics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alam MF, Datta K, Abrigo E, Vasquez A, Senadhira D & Datta SK (1998) Production of deepwater indica rice plants expressing a synthetic Bacillus thuringiensis cryIA(b) gene with enhanced resistance to yellow stem borer. Plant Sci.135: 25-30

    Google Scholar 

  • Alam MF, Datta K, Abrigo E, Oliva N, Tu J, Virmani SS & Datta SK (1999) Transgenic insect-resistant maintainer line (IR68899B) for improvement of hybrid rice. Plant Cell Rep. 18: 572-575

    CAS  Google Scholar 

  • Albert H, Dale EC, Lee E & Ow DW (1995) Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J. 7: 649-659

    PubMed  CAS  Google Scholar 

  • Altpeter F, Vasil V & Srivastava V & Vasil IK (1996) Integration and expression of the high-molecular-weight glutenin subunit 1Ax1 gene into wheat. Nature Biotechnol. 14: 1155-1159

    CAS  Google Scholar 

  • Altpeter F, Diaz I, McAuslane H, Gaddour K, Carbonero P & Vasil IK (1999) Increased insect resistance in transgenic wheat stably expressing trypsin inhibitor CME. Mol. Breed.5: 53-63

    CAS  Google Scholar 

  • Arencibia A, Gentinetta E, Cuzzoni E, Castiglione S, Kohli A, Vain P, Leech M, Christou P & Sala F (1998) Molecular analysis of the genome of transgenic rice (Oryza sativa L.) plants produced via particle bombardment or intact cell electroporation. Mol. Breed. 4: 99-109

    CAS  Google Scholar 

  • Armstrong CL, Parker GB, Pershing JC, Brown SM, Sanders PR, Duncan DR, Stone T, Dean DA, DeBoer DL, Hart J, Howe AR, Morrish FM, Pajeau ME, Petersen WL, Reich BJ, Rodriguez R, Santino CG, Sato SJ, Schuler W, Sims SR, Stehling S, Tarochione LJ & Fromm ME (1995) Field evaluation of European corn borer control in progeny of 173 transgenic corn events expressing an insecticidal protein from Bacillus thuringiensis. Crop Sci. 35: 550-557

    Google Scholar 

  • Aspegren K, Mannonen L, Ritala A, Puupponen-Pimiä R, Kurten U, Salmenkallio-Martila U, Kauppinen V & Teeri TH (1995) Secretion of a heat-stable fungal â-glucanase from transgenic, suspension-cultured barley cells. Mol. Breed. 1: 91-99

    CAS  Google Scholar 

  • Aung T, Thomas H & Jones IT (1977) The transfer of the gene for mildew resistance from Avena barbata (4x) into the cultivated oat A. sativa by an induced translocation. Euphytica 26: 623-632

    Google Scholar 

  • Autrique E, Singh RP, Tanksley SD & Sorrels ME (1995) Molecular markers for four leaf rust resistance genes introgressed into wheat from wild relatives. Genome 38: 75-83

    CAS  Google Scholar 

  • Baenziger PS & Peterson CJ (1992) Genetic variation: Its origin and use for breeding self-pollinated species. In: Stalker TM & Murphy JP (eds) Plant Breeding in the 1990s 69-92 CAB International, Oxon, UK

    Google Scholar 

  • Båga M, Chibbar RN & Kartha KK (1999a) Expression and regulation of transgenes for selection of transformants and modification of traits in cereals In: Vasil IK (ed) Molecular Improvement of Cereal Crops 83-131 Kluwer Acad, London

    Google Scholar 

  • Båga M, Repellin A, Demeke T, Caswell K, Leung N, Abdel-Aal ES, Hucl P & Chibbar RN (1999b) Wheat starch modification through biotechnology. Starch 51: 111-116

    Google Scholar 

  • Banks PM, Larkin PJ, Bariana HS, Lagudah, ES, Appels R, Waterhouse PM, Brettell RIS, Chen X, SU HJ, Xin ZY, Qian YT, Zhou XM, Cheng ZM & Zhou GH (1995) The use of cell culture of subchromosomal introgressions of barley yellow dwarf virus resistance from Thinopyrum intermedium to wheat. Genome 38: 395-405

    Google Scholar 

  • Barcelo P & Lazzeri PA (1998) Direct gene transfer: chemical, electrical and physical methods In: Lindsey K (ed) Transgenic Plant Research (pp 1-34). Harwood Academic, The Netherlands

    Google Scholar 

  • Barro F, Rooke L, Békés F, Gras P, Tatham AS, Fido R, Lazzeri P, Shewry PR & Barceló P (1997) Transformation of wheat with high molecular weight subunit genes results in improved functional properties. Nature Biotechnol. 15: 1295-1299

    CAS  Google Scholar 

  • Barro F, Cannell ME, Lazzeri PA & Barcelo P (1998) The influence of auxins on transformation of wheat and tritordeum and analysis of transgene integration patterns in transformants. Theor. Appl. Genet. 97: 684-695

    CAS  Google Scholar 

  • Barsby TL, Bervas E, Coates S, Freeman JP & Weir AF (1999) Significant alteration of wheat starch by transgenesis. In: Abstracts Book, Genetic Tailoring of Novel Starch Polymers. Carry-le-Rouet, France

    Google Scholar 

  • Barton KA, Binns AN, Matzke AJM & Chilton MD (1983) Regeneration of intact tobacco plants containing full length copies of genetically engineered T-DNA and transmission of T-DNA to R1 progeny. Cell 32: 1033-1043

    PubMed  CAS  Google Scholar 

  • Becker D, Brettschneider R & Lörz H (1994) Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant J. 5: 299-307

    PubMed  CAS  Google Scholar 

  • Blechl A & Anderson OD (1996) Expression of a novel highmolecular-weight glutenin subunit gene in transgenic wheat. Nature Biotechnology 14: 875-879

    PubMed  CAS  Google Scholar 

  • Blechl A, Le HQ & Anderson OD (1998) Engineering changes in wheat flour by genetic transformation. J. Plant Physiol. 152: 703-707

    CAS  Google Scholar 

  • Bliffeld M, Mundy J, Potrykus I & Futterer J (1999) Genetic engineering of wheat for increased resistance to powdery mildew disease. Theor. Appl. Genet. 98: 1079-1086

    CAS  Google Scholar 

  • Bligh HFJ (1999) Genetic manipulation of starch biosynthesis: Progress and potential. Biotechnol. Genet. Engg. Rev. 16: 177-201

    Google Scholar 

  • Bohorova N, Zhang W, Julstrum P, McLean S, Luna B, Brito RM, Diaz L, Ramos ME, Estanol P, Pacheco M, Salgado M & Hoisington D (1999) Production of transgenic tropical maize with cryIAb and cryIAc genes via microprojectile bombardment of immature embryos. Theor. Appl. Genet. 99: 437-444

    CAS  Google Scholar 

  • Bommineni VR & Jauhar PP (1997) An evaluation of target cells and tissues used in genetic transformation of cereals.Maydica 42: 107-120

    Google Scholar 

  • Bommineni VR, Jauhar PP & Peterson TS (1997) Transgenic durum wheat by microprojectile bombardment of isolated scutella. J. Heredity 88: 475-481

    Google Scholar 

  • Borém A, Mather DE, Rasmusson DC, Fulcher RG & Hayes PM (1999) Mapping quantitative trait loci for starch granule traits in barley. J. Cereal Sci. 29: 153-160

    Google Scholar 

  • Borlaug NE (1998) Feeding a world of 10 billion people: the miracle ahead. Plant Tiss. Cult. Biotech. 3: 119-127

    Google Scholar 

  • Brar DS & Khush GS (1986) Wide hybridization and chromosome manipulation in cereals. In: Evans DA, Sharp WR & Ammirato PV (eds) Handbook of Plant Cell Culture 221-263 Macmillan Publishing Co., New York

    Google Scholar 

  • Bravo-Angel AM, Gloeckler V, Hohn B & Tinland B (1999) Bacterial conjugation protein MobA mediates integration of complex DNA structures into plant cells. J. Bacteriol. 181: 5758-5765

    PubMed  CAS  Google Scholar 

  • Brown LR & Kane H (1994) Full House: Reassuring the Earth's Population Carrying Capacity. W.W. Norton and Company, New York.

    Google Scholar 

  • Burke DT, Carle GF & Olson M (1987) Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236: 806-812

    PubMed  CAS  Google Scholar 

  • Burkhardt PK, Beyer P, Wünn J, Klöti A, Armstrong GA, Schledz M, von Lintig JV & Potrykus I (1997) Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accumulates phytoene, a key intermediate of provitamin A biosynthesis. Plant J. 11: 1071-1078

    PubMed  CAS  Google Scholar 

  • Caimi PG, McCole LM, Klein TM & Kerr PS (1996) Fructan accumulation and sucrose metabolism in transgenic maize endosperm expressing a Bacillus amyloliquefaciens sacb gene. Plant Physiol. 110: 355-363

    PubMed  CAS  Google Scholar 

  • Capell T, Escobar C, Liu H, Burtin D, Lepri O & Christou P (1998) Over-expression of the oat arginine decarboxylase cDNA in transgenic rice (Oryza sativa L.) affects normal development patterns in vitro and results in putrescine accumulation in transgenic plants. Theor. Appl. Genet. 97: 246-254

    CAS  Google Scholar 

  • Chair H, Legavre T & Guiderdoni E (1996) Transformation of haploid, microspore-derived cell suspension protoplasts of rice (Oryza sativa L.). Plant Cell Rep. 15: 766-770

    CAS  Google Scholar 

  • Chan MT, Chang HH, Ho SL, Tong WF & Yu SM (1993) Agrobacterium-mediated production of transgenic rice plants expressing a chimeric á-amylase promoter/â-glucuronidase gene. Plant Mol. Biol. 22: 491-506

    PubMed  CAS  Google Scholar 

  • Chareonpornwattana S, Thara KV, Wang L, Datta SK, Panbangred W & Muthukrishnan S (1999) Inheritance, expression, and silencing of a chitinase transgene in rice. Theor. Appl. Genet. 98: 371-378

    CAS  Google Scholar 

  • Chen L, Marmey P, Taylor NJ, Brizard JP, Espinoza C, D'Cruz P, Huet H, Zhang S, de Krochko A, Beachy RN & Fauquet CM (1998a) Expression and inheritance of multiple transgenes in rice plants. Nature Biotechnol. 16: 1060-1064

    CAS  Google Scholar 

  • Chen WP, Gu X, Liang GH, Muthukrishnan S, Chen PD, Liu DJ & Gill BS (1998b) Introduction and constitutive expression of a rice chitinase gene in bread wheat using biolistic bombardment and the bar gene as a selectable marker. Theor. Appl. Genet. 97: 1296-1306

    CAS  Google Scholar 

  • Chen WP, Chen PD, Liu DJ, Kynast R, Friebe B, Velazhahan R, Muthukrishnan S & Gill BS (1999) Development of wheat scab symptoms is delayed in transgenic wheat plants that constitutively express a rice thaumatin-like protein gene. Theor. Appl. Genet. 99: 755-760

    CAS  Google Scholar 

  • Chen Z, Zhuge Q & Sundqvist C (1995) Oat leaf base: Tissue with an efficient regeneration capacity. Plant Cell Rep. 14: 354-358

    CAS  Google Scholar 

  • Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW & Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol.115: 971-980

    PubMed  CAS  Google Scholar 

  • Cheng X, Sardana R, Kaplan H & Altosaar I (1998) Agrobacteriumtransformed rice plants expressing synthetic cryIA(b) and cryI(c) genes are highly toxic to striped stem borer and yellow stem borer. Proc. Natl. Acad. Sci. USA 95: 2767-2772

    PubMed  CAS  Google Scholar 

  • Cheung A, Bogorad Y, VanMontague M & Schell J (1988) Relocating a gene for herbicide tolerance: a chloroplast gene is converted into a nuclear gene. Proc. Natl. Acad. Sci. USA 85: 391-394

    PubMed  CAS  Google Scholar 

  • Christou P (1995) Strategies for variety-independent genetic transformation of important cereals, legumes and woody species utilizing particle bombardment. Euphytica 85: 13-27

    Google Scholar 

  • Christou P, Ford TL & Kofron M (1991) Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/Technol. 9: 957-962

    Google Scholar 

  • Coleman CE, Clore AM, Ranch JP, Higgins R, Lopes MA & Larkins BA (1997) Expression of a mutant á-zein creates the floury2 phenotype in transgenic maize. Proc. Natl. Acad. Sci. USA 94: 7094-7097

    PubMed  CAS  Google Scholar 

  • Comai L, Facciotti D, Hiatt WR, Thompson G, Rose RE & Stalker DM (1985) Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate. Nature 317: 741-744

    CAS  Google Scholar 

  • Crameri A, Whitehorn EA, Tate E & Stemmer WPC (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nature Biotechnol. 14: 315-319

    CAS  Google Scholar 

  • Datta SK, Peterhans A, Datta K & Potrykus I (1990) Genetically engineered fertile indica-rice recovered from protoplasts. Bio/Technol. 8: 736-740

    CAS  Google Scholar 

  • Datta SK, Datta K, Soltanifar N, Donn G & Potrykus I (1992) Herbicide-resistant indica rice plants from IRRI breeding line IR72 after PEG-mediated transformation of protoplasts. Plant Mol. Biol. 20: 619-629

    PubMed  CAS  Google Scholar 

  • Datta K, Vasquez A, Tu J, Torrizo L, Alam MF, Oliva N, Abrigo E, Khush GS & Datta SK (1998) Constitutive and tissue-specific differential expression of cryIA(b) gene in transgenic rice plants conferring resistance to insect pest. Theor. Appl. Genet. 97: 20-30

    CAS  Google Scholar 

  • Datta K, Velazhahan R, Oliva N, Ona I, Mew T, Khush GS, Muthukrishnan S & Datta SK (1999) Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmentally friendly resistance to Rhizoctonia solani causing sheath blight disease. Theor. Appl. Genet. 98: 1138-1145

    CAS  Google Scholar 

  • De Block M, Botterman T, Vandewiele M, Dockx T, Thoen C, Gosselé V, Movva NR, van Montagu M & Leemans J (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J. 6: 2513-2518

    PubMed  CAS  Google Scholar 

  • De Block M, Debrouwer D & Moens T (1997) The development of a nuclear male sterility system in wheat. Expression of the barnase gene under the control of tapetum specific promoters. Theor. Appl. Genet. 95: 125-131

    CAS  Google Scholar 

  • De Cleene M & De Ley J (1976) The host range of crown gall. Bot. Rev. 42: 389-466

    Google Scholar 

  • Demeke T, Hucl P, Båga M, Caswell K, Leung N & Chibbar RN (1999) Transgene inheritance and silencing in hexaploid spring wheat. Theor. Appl. Genet. 99: 947-953

    CAS  Google Scholar 

  • D'Halluin K, Bonne E, Bossut M, De Beuckeleer M & Leemans J (1992) Transgenic maize plants by tissue electroporation. Plant Cell 4: 1495-1505

    PubMed  Google Scholar 

  • Donn G, Tischer E, Smith JA & Goodman HM (1984) Herbicideresistant alfalfa cells: an example of gene amplification in plants. J. Mol. Appl. Genet. 2: 621-626

    PubMed  CAS  Google Scholar 

  • Duan X, Li X, Xue Q, Abo-El-Saad M, Xu D & Wu R (1996) Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant. Nature Biotech.14: 494-498

    CAS  Google Scholar 

  • Edwards A, Fulton DC, Hylton CM, Jobling SA, Gidley M, Rössner U, Martin C & Smith A (1999) A combined reduction in activity of starch synthases II and III of potato has novel effects on the starch of tubers. Plant J. 17: 251-261

    CAS  Google Scholar 

  • Evans JR (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78: 9-19

    Google Scholar 

  • Fehr WR (ed) (1984) Genetic Contributions to Yield Gains of Five Major Crop Plants. Crop Science Society of America Special Publication No. 7, Madison, Wisconsin

    Google Scholar 

  • Fettig S & Hess D (1999) Expression of a chimeric stilbene synthase gene in transgenic wheat lines. Transgenic Res. 8: 179-189

    CAS  Google Scholar 

  • Finer JJ, Vain P, Jones MW & McMullen MD (1992) Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep. 11: 323-328

    CAS  Google Scholar 

  • Finer JJ, Finer KR & Ponappa T (1999) Particle bombardment mediated transformation. In: Hammond J, McGarvey P & Yusibov V (eds) Plant Biotechnology 59-80 Springer, Berlin

    Google Scholar 

  • Frame BR, Drayton PR, Bagnall SV, Lewnau CJ, Bullock WP, Wilson HM, Dunwell JM, Thompson JA & Wang K (1994) Production of fertile transgenic maize plants by silicon carbide whisker-mediated transformation. Plant J. 6: 941-948

    CAS  Google Scholar 

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA & Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91: 59-87

    Google Scholar 

  • Fromm ME, Morrish F, Armstrong C, Williams R, Thomas J & Klein TM (1990) Inheritance and expression of chimeric genes in the progeny of maize plants. Bio/Technol. 8: 833-839

    CAS  Google Scholar 

  • Fujimoto H, Itoh K, Yamamoto M, Kyozuka J & Shimamoto K (1993) Insect resistant rice generated by introduction of a modified δ-endotoxim gene of Bacillus thuringiensis. Bio/Technology 11: 1151-1155

    PubMed  CAS  Google Scholar 

  • Fujisawa Y, Kato T, Ohki S, Ishikawa H, Kitano H, Sasaki T, Asahi T & Iwasaki Y (1999) Suppression of the heterotrimeric G protein causes abnormal morphology, including dwarfism, in rice. Proc. Natl. Acad. Sci. USA 96: 7575-7580

    PubMed  CAS  Google Scholar 

  • Funatsuki H, KurodaM, Lazzeri PA, Müller E, Lörz H & Kishinami I (1995) Fertile transgenic barley generated by direct transfer to protoplasts. Theor. Appl. Genet. 91: 707-712

    CAS  Google Scholar 

  • Ghareyazie B, Alinia F, Menguito CA, Rubia LG, de Palma JM, Liwanag EA, Cohen MB, Khush GS & Bennett J (1997) Enhanced resistance to two stem borers in an aromatic rice containing a synthetic cryIA(b) gene. Mol. Breed. 3: 401-414

    CAS  Google Scholar 

  • Gless C, Lörz H & Jähne-Gärtner A (1998) Transgenic oat plants obtained at high efficiency by microprojectile bombardment of leaf base segments. J. Plant Physiol. 152: 151-157

    CAS  Google Scholar 

  • Gordon-Kamm WJ, Spencer MT, Mangano ML, Adams TR, Daines RJ, StartWG, O'Brien JV, Chambers SA, Adams Jr.WR, Willets NG, Rice TB, Mackey CJ, Krueger RW, Kausch AP & Lemaux PG (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2: 603-618

    PubMed  CAS  Google Scholar 

  • Goto F, Yoshihara T, Shigemoto N, Toki S & Takaiwa F (1999) Iron fortification of rice seed by the soybean ferritin. Nature Biotechnol. 17: 282-286

    CAS  Google Scholar 

  • Hamilton CM(1997) A binary-BAC system for plant transformation with high molecular weight DNA. Gene 200: 107-119

    PubMed  CAS  Google Scholar 

  • Han F, Kilian A, Chen JP, Kudrn D, Steffenson BJ, Yamamoto K, Matsumoto T, Sasaki T & Kleinhofs A (1999) Sequence analysis of a rice BAC covering the syntenous barley Rpg1 region. Genome 42: 1071-1076

    PubMed  CAS  Google Scholar 

  • Hanna WW (1996) Improvements of millets: emerging trends. In: Chopra VL, Singh RB & Varma A (eds) Proceedings of 2nd International Crop Science Congress. 139-146 Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi

    Google Scholar 

  • Hansen G & Chilton MD (1996) 'Agrolistic’ transformation of plant cells: Integration of T-strands generated in planta. Proc. Natl. Acad. Sci. USA 93: 14978-14983

    PubMed  CAS  Google Scholar 

  • He GY & Lazzeri PA (1998) Analysis and optimization of DNA delivery into wheat scutellum and tritordeum inflorescence explants by tissue electroporation. Plant Cell Rep. 18: 64-70

    CAS  Google Scholar 

  • He GY, Rooke L, Steele S, Bekes F, Gras P, Tatham AS, Fido R, Barcelo P, Shewry PR & Lazzeri PA (1999a) Transformation of pasta wheat (Triticum turgidum L. var. durum) with highmolecular-weight glutenin subunit genes and modification of dough functionality. Mol. Breed. 5: 377-386

    CAS  Google Scholar 

  • He P, Li SG, Qian Q, Ma YQ, Li JZ, Wang WM, Chen Y & Zhu LH (1999b) Genetic analysis of rice grain quality. Theor. Appl. Genet. 98: 502-508

    CAS  Google Scholar 

  • Hiei Y, Ohta S, Komari T & Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6: 271-282

    PubMed  CAS  Google Scholar 

  • Hohmann U, Badaeva ED, Busch W, Friebe B & Gill BS (1996) Molecular cytogenetic analysis of Agropyron chromatin specifying resistance to barley yellow dwarf virus in wheat. Genome 39: 336-347

    CAS  Google Scholar 

  • Holmes-Davis R & Comai L (1998) Nuclear matrix attachment regions and plant gene expression. Trends in Pl. Sci. 3: 91-97

    Google Scholar 

  • Huet H, Mahendra S, Wang J, Sivamani E, Ong CA, Chen L, de Krochko A, Beachy RN & Fauquet CM (1999) Near immunity to rice tungro spherical virus achieved in rice by a replicasemediated resistance strategy. Phytopathol. 89: 1022-1027

    CAS  Google Scholar 

  • Hukuhara T, Hayakawa T & Wijonarko A (1999) Increased baculovirus susceptibility of army worm larvae feeding on transgenic rice plants expressing an entomopoxvirus gene. Nature Biotechnol. 17: 1122-1124

    CAS  Google Scholar 

  • Irie K, Hosoyama H, Takeuchi T, Iwabuchi K, Watanabe H, Abe M, Abe K & Arai S (1996) Transgenic rice established to express corn cystatin exhibits strong inhibitory activity against insect gut proteinases. Plant Mol. Biol. 30: 149-157

    PubMed  CAS  Google Scholar 

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T & Kumashiro T (1996) High efficiency transformation of Maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnol. 14: 745-750

    CAS  Google Scholar 

  • Itoh K, Nakajima M & Shimamoto K (1997) Silencing of waxy genes in rice containing wx transgenes. Mol. Gen. Genet.255: 351-358

    PubMed  CAS  Google Scholar 

  • Jähne A, Becker D, Brettschneider R & Lörz H (1994) Regeneration of transgenic, microspore-derived, fertile barley. Theor. Appl. Genet. 89: 525-533

    Google Scholar 

  • Jain RK, Jain S, Wang BY & Wu R (1996) Optimization of biolistic method for transient gene expression and production of agronomically useful transgenic Basmati rice plants.Plant Cell Rep. 15: 963-968

    CAS  Google Scholar 

  • Jauhar PP (1977) Genetic regulation of diploid-like chromosome pairing in Avena. Theor. Appl. Genet. 49: 287-295

    Google Scholar 

  • Jauhar PP (1981) Cytogenetics and Breeding of Pearl Millet and Related Species. Alan R. Liss, Inc., New York

    Google Scholar 

  • Jauhar PP (1993) Alien gene transfer and genetic enrichment of bread wheat. In: Damania AB (ed) Biodiversity and Wheat Improvement 103-119. John Wiley and Sons, Chichester, England

    Google Scholar 

  • Jauhar PP & Chibbar RN (1999) Chromosome-mediated and direct gene transfers in wheat. Genome 42: 570-583

    CAS  Google Scholar 

  • Jauhar PP & Hanna WW (1998) Cytogenetics and genetics of pearl millet. In Sparks DL (ed) Advances in Agronomy, Vol 64 (pp 1-26). Academic Press, New York

    Google Scholar 

  • Jauhar PP & Joppa LR (1996) Chromosome pairing as a tool in genome analysis: merits and limitations. In: Jauhar PP (ed) Methods of Genome Analysis in Plants (pp 9-37). CRC Press, Boca Raton, London, Tokyo

    Google Scholar 

  • Jauhar PP & Peterson TS (1998) Wild relatives of durum wheat as source of Fusarium head blight resistance. Proc. of the 1998 National Head Blight (Scab) Forum, Michigan State University, East Lansing, pp 179-181

  • Jauhar PP & Peterson TS (2000a) Hybrids between durum wheat and Thinopyrum junceiforme: Prospects for breeding for scab resistance. Euphytica109: (in press)

  • Jauhar PP & Peterson TS (2000b) Progress in producing scabresistant durum wheat germplasm. Proc. International Wheat Scab Symposium, Nanjing Agricultural University, Nanjing, China (in press)

  • Jensen LG, Olsen O, Kops O, Wolf N, Thomsen KK & von Wettstein D (1996) Transgenic barley expressing a proteinengineered, thermostable (1,3-1,4) )-β-glucanase during germination. Proc. Natl. Acad. Sci. USA 93: 3487-3491

    PubMed  CAS  Google Scholar 

  • Jensen LG, Politz O, Olsen O, Thomsen KK & von Wettstein D (1998) The inheritance of a codon-optimized transgene expressing heat stable (1,3-1,4)-â-glucanase in scutellum and aleurone of germinating barley. Hereditas 129: 215-225

    CAS  Google Scholar 

  • Jiang J, Friebe B & Gill BS (1994) Recent advances in alien gene transfer in wheat. Euphytica 73: 199-212

    Google Scholar 

  • Jin S, Komari T, Gordon MP & Nester EW (1987) Genes responsible for the supervirulence phenotype of Agrobacterium tumefaciens A281. J. Bacteriol. 169: 4417-4425

    PubMed  CAS  Google Scholar 

  • Jones N, Ougham H & Thomas H (1997) Markers and mapping: We are all geneticists now. New Phytol. 137: 165-177

    Google Scholar 

  • Karunaratne S, Sohn A, Mouradov A, Scott J, Steinbiss HH & Scott KJ (1996) Transformation of wheat with the gene encoding the coat protein of barley yellow mosaic virus. Aust. J. Plant Physiol. 23: 429-435

    CAS  Google Scholar 

  • Kianian SF, Egli MA, Phillips RL, Rines RW, Somers DA, Gegenbach BG, Webster FH, Livingston SM, Groh S, O'Donoughue LS, Sorells ME, Wesenberg DM, Stuthman DD & Fulcher RG (1999) Association of a major groat oil content QTL and anacetyl-CoA carboxylase gene in oat. Theor. Appl. Genet. 98: 884-894

    CAS  Google Scholar 

  • Kim JC & Choi SJ (1998) Transformation system of rice suspension-cultured microcolonies by electroporation. J. Plant Biol. 41: 193-200

    CAS  Google Scholar 

  • Kisaka H, Sano H & Kameya T (1998) Characterization of transgenic rice plants that express rpg1, the gene for a small GTPbinding protein from rice. Theor. Appl. Genet. 97: 810-815

    CAS  Google Scholar 

  • Klein TM & Jones TJ (1999) Methods of genetic transformation: the gene gun In: Vasil IK (ed) Molecular Improvement of Cereal Crop (pp 21-42) Kluwer Academic, London

    Google Scholar 

  • Koev G, Mohan BR, Dineshkumar SP, Torbert KA, Somers DA & Miller WA (1998) Extreme reduction of disease in oats transformed with the 5’ half of the barley yellow dwarf virus PAV genome. Phytopathol. 88: 1013-1019

    CAS  Google Scholar 

  • Kohli A, Gahakwa D, Vain P, Laurie DA & Christou P (1999a) Transgene expression in rice engineered through particle bombardment: Molecular factors controlling stable expression and transgene silencing. Planta 208: 88-97

    CAS  Google Scholar 

  • Kohli A, Griffiths S, Palacios N, Twyman RM, Vain P, Laurie DA & Christou P (1999b) Molecular characterization of transforming plasmid rearrangements in transgenic rice reveals a recombination hotspot in the CaMV 35S promoter and confirms the predominance of microhomology mediated recombination. Plant J. 17: 591-601

    PubMed  CAS  Google Scholar 

  • Komari T (1990) Transformation of cultured cells of Chenopodium quinoa by binary vectors that carry a fragment of DNA from the virulence region of pTiBo542. Plant Cell Rep. 9: 303-306

    CAS  Google Scholar 

  • Komari T, Hiei Y, Ishida Y, Kumashiro T & Kubo T (1998) Advances in cereal gene transfer. Curr. Opinion Plant. Biol. 1: 161-165

    CAS  Google Scholar 

  • Komari T & Kubo T, 1999. Methods of genetic transformation: Agrobacterium tumefaciens In: Vasil IK (ed) Molecular Improvement of Cereal Crop 43-82, Kluwer Academic, London

    Google Scholar 

  • Koprek T, Hänsch R, Nerlich A, Mendel RR & Schulze J (1996) Fertile transgenic barley of different cultivars obtained by adjustment of bombardment conditions to tissue culture response. Plant Sci. 119: 79-91

    CAS  Google Scholar 

  • Koziel Mg, Beland GL, Bowman C, Carozzi NB, Crenshaw R, Crossland L, Dawson J, Desai N, Hill M, Kadwell S, Launis K, Lewis K, Maddox D, McPherson K, Meghji MR, Merlin E, Rhodes R, Warren GW, Wright M & Evola SV (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technol. 11: 194-200

    CAS  Google Scholar 

  • Ku MSB, Agarie S, Nomura M, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M & Matsuoka M (1999) Highlevel expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nature Biotechnol. 17: 76-80

    CAS  Google Scholar 

  • Kumpatla SP, Teng W, Buchholz WG & Hall TC (1997) Epigenetic transcriptional silencing and 5-azacytidine-mediated reactivation of a complex transgene in rice. Plant Physiol. 115: 361-373

    PubMed  CAS  Google Scholar 

  • Kumpatla SP & Hall TC (1998a) Recurrent onset of epigenetic silencing in rice harboring multi-copy transgene. Plant J. 14: 129-135

    PubMed  CAS  Google Scholar 

  • Kumpatla SP & Hall TC (1998b) Longevity of 5-azacytidinemediated gene expression and re-establishment of silencing in transgenic rice. Plant Mol. Biol. 38: 1113-1122

    PubMed  CAS  Google Scholar 

  • Kusnaki AR, Hood EE, Witcher DR, Howard JA & Nikolov ZL (1998) Production and purification of two recombinant proteins from transgenic corn. Biotechnology Prog. 14: 149-155

    Google Scholar 

  • Larkin PJ & Scowcroft WR (1981) Somaclonal variation-a novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet. 60: 197-214

    Google Scholar 

  • Lásztity R (1996) The Chemistry of Cereal Proteins (2nd ed). CRC Press, Boca Raton, USA

    Google Scholar 

  • Leckband G & Lörz H (1998) Transformation and expression of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increased fungal resistance. Theor. Appl. Genet. 96: 1004-1012

    CAS  Google Scholar 

  • Lee SH, Shon YG, Lee SI, Kim CY, Koo JC, Lim CO, Choi YJ, Han CD, Chung CH, Choe ZR & Cho MJ (1999a) Cultivar variability in the Agrobacterium-rice cell interaction and plant regeneration.Physiol. Plantarum 107: 338-345

    CAS  Google Scholar 

  • Lee SI, Lee SH, Koo JC, Chun HJ, Lim CO, Mun JH, Song YH & Cho MJ (1999b) Soybean Kunitz trypsin inhibitor (SKTI) confers resistance to the brown plant hopper (Nilaparvata lugens Stal.) in transgenic rice. Mol. Breed. 5: 1-9

    Google Scholar 

  • Lemaux P, Cho MJ, Zhang S & Bregitzer P (1999) Transgenic cereals: Hordeum vulgare (barley) In: Vasil IK (ed) Molecular Improvement of Cereal Crop (pp 255-316. Kluwer Academic, London

    Google Scholar 

  • LinW, Anuratha CS, Datta K, Potrykus I, Muthukrishnan S & Datta SK (1995) Genetic engineering of rice for resistance to sheath blight. Bio/Technol. 13: 686-691

    CAS  Google Scholar 

  • Lloyd JR, Landschütze V & Kossman J (1999) Simultaneous antisense inhibition of two starch-synthase isoforms in potato tubers leads to accumulation of grossly modified amylopectin. Biochem J. 338: 515-521

    PubMed  CAS  Google Scholar 

  • Lütticke S, Genschel U, Block M, Kröger C, Walter L, Abel G & Lörz H (1999) Approaches to metabolic engineering of starch biosynthesis in wheat In: Abstracts book, Genetic Tailoring of Novel Starch Polymers, Carry-le-Rouet, France, Sept 1999 (p 35)

  • Machii H, Mizuno H, Hirabayashi T, Li H & Hagio T (1998) Screening wheat genotypes for high callus induction and regeneration capability from anther and immature embryo cultures. Plant. Cell. Tiss. Org. Cult. 53: 67-74

    Google Scholar 

  • Makino A, Shimada T, Takumi S, Kaneko K, Matsuoka M, Shimamoto K, Nakano H, Miyao-Tokutomi M, Mae T & Yamamoto N (1997) Does decrease in ribulose-1,5-bisphosphate carboxylase by antisense RbcS lead to a higher N-use efficiency of photosynthesis under conditions of saturating CO2 and light in rice plants? Plant Physiol. 114: 483-491

    PubMed  CAS  Google Scholar 

  • Maqbool SB, Husnain T, Riadzudin S, Masson L & Christou P (1998) Effective control of yellow stem borer and rice leaf folder in transgenic indica varieties Basmati 370 and M7 using the novel delta-endotoxin cry2A Bacillus thuringiensis gene. Mol. Breed. 4: 501-507

    CAS  Google Scholar 

  • Maqbool SB & Christou P (1999) Multiple traits of agronomic importance in transgenic indica rice plants: analysis of transgene integration patterns, expression levels and stability. Mol. Breed. 5: 471-480

    Google Scholar 

  • Matsumoto S, Ito Y, Hosoi T, Takahashi Y & Machida Y (1990) Integration of T-DNA into tobacco chromosome: possible involvement of DNA homology between T-DNA and plant DNA. Mol. Gen. Genet. 224: 309-316

    PubMed  CAS  Google Scholar 

  • Matsuoka M, Tamaoki M, Tada Y, Fuyjimura T, Tagiri A, Yamamoto N & Kanomurakami Y (1995) Expression of rice osh1 gene is localized in developing vascular strands and its ectopic expression in transgenic rice causes altered morphology of leaf. Plant Cell Rep. 14: 555-559

    CAS  Google Scholar 

  • Matsushita J, Otani M, Wakita Y, Tanaka O & Shimada T (1999) Transgenic plant regeneration through silicon carbide wiskermediated transformation of rice (Oryza sativa L.). Breed. Sci. 49: 21-26

    Google Scholar 

  • Matzke MA & Matzke AJM (1995) How and why do plants inactivate homologous (Trans) genes? Plant Physiol. 107: 679-685

    PubMed  CAS  Google Scholar 

  • McCabe D & Christou P (1993) Direct DNA transfer using electrical discharge particle acceleration (Accell technology). Plant Cell Tiss. Org. Cult. 33: 227-236

    CAS  Google Scholar 

  • McGrath PF, Vincent JR, Lei CH, Pawlowski WP, Torbert KA, Gu W, Käppler HF, Wan Y, Lemaux PG, Rines HR, Somers DA, Larkins BA & Lister RM (1997) Coat protein-mediated resistance to isolates of barley yellow dwarf virus in oats and barley. Eur. J. Plant Pathol. 103: 695-710

    CAS  Google Scholar 

  • Merlo AO, Cowen N, Delate T, Edington B, Folkerts O, Hopkins N, Lemieux C, Skokut T, Smith K, Woosley A, Yang YJ, Young S & Zwick M (1998) Ribozymes targeted to stearoyl-ACP ä-9 desaturase mRNA produce heritable increases of stearic acid in transgenic maize leaves. Plant Cell 10: 1603-1621

    PubMed  CAS  Google Scholar 

  • Miura H & Sugawara A (1996) Dosage effects of the three Wx genes on amylose synthesis in wheat endosperm. Theor. Appl. Genet. 93: 1066-1070

    CAS  Google Scholar 

  • Mochizuki A, Nishizawa Y, Onodera H, Tabei Y, Toki S, Habu Y, Ugaki M & Ohashi Y (1999) Transgenic rice plants expressing a trypsin inhibitor are resistant against rice stem borers, Chilo suppressalis. Entomologia Experimentalis et Applicata 93: 173-178

    CAS  Google Scholar 

  • Mohanty A, Sarma NP & Tyagi AK (1999) Agrobacteriummediated high frequency transformation of an elite indica rice varity Pusa Basmati 1 and transmission of the transgenes to R2 progeny. Plant Sci. 147: 127-137

    CAS  Google Scholar 

  • Momma K, Hashimoto W, Ozawa S, Kawai S, Katsube T, Takaiwa F, Kito M, Utsumi S & Murata K (1999) Quality and safety evaluation of genetically engineered rice with soybean glycinin: Analyses of the grain composition and digestibility of glycinin in transgenic rice. Biosci. Biotechnol. Biochem. 63: 314-318

    PubMed  CAS  Google Scholar 

  • Morino K, Olsen OA & Shimamoto K (1999) Silencing of an aleurone-specific gene in transgenic rice is caused by a rearranged transgene. Plant J. 17: 275-285

    PubMed  CAS  Google Scholar 

  • Moullet O, Zhang HB & Lagudah ES (1999) Construction and characterization of a large DNA insert library from the D genome of wheat. Theor. Appl. Genet. 99: 305-313

    Google Scholar 

  • Muthukrishnan S, Liang GH, Trick HN & Gill BS (2001) Pathogenesis-related proteins and their genes in cereals. Plant Cell Tiss. Org. Cult. 64: 93-114

    CAS  Google Scholar 

  • Nam J, Mysore KS, Zheng C, Knue MK, Matthysse AG & Gelvin SB (1999) Identification of T-DNA tagged Arabidopsis mutants that are resistant to transformation by Agrobacterium. Mol.Gen. Genet. 261: 429-438

    PubMed  CAS  Google Scholar 

  • Narasimhulu SB, Deng X, Sarria R & Gelvin SB (1996) Early transcription of Agrobacterium T-DNA genes in tobacco and maize. Plant Cell 8: 873-886

    PubMed  CAS  Google Scholar 

  • Nayak P, Basu D, Das S, Basu A, Ghosh A, Ramakrishnan NA, Ghosh M & Sen SK (1997) Transgenic elite indica rice plants expressing CrylAc ä-endotoxin of Bacillus thuringiensis are resistant against yellow stem borer (Scirpophaga incertulas). Proc. Natl. Acad. Sci. USA 94: 2111-2116

    PubMed  CAS  Google Scholar 

  • Nehra NS, Chibbar RN, Leung N, Caswell K, Mallard C, Steinhauer L, Båga M & Kartha KK (1994) Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues following microprojectile bombardment with two distinct gene constructs. Plant J. 5: 285-297

    CAS  Google Scholar 

  • Nishizawa Y, Nishio Z, Nakazono K, Soma M, Nakajima E, Ugaki M & Hibi T (1999) Enhanced resistance to blast (Magnaporthe grisea) in transgenic japonica rice by constitutive expression of rice chitinase.Theor. Appl. Genet. 99: 383-390

    CAS  Google Scholar 

  • Nuutila AM, Ritala A, Skadsen RW, Mannonen L & Kauppinen V (1999) Expression of fungal thermotolerant endo-1,4-β-glucanase in transgenic barley seeds during germination. Plant Mol. Biol. 41: 777-783

    PubMed  CAS  Google Scholar 

  • Oard JH, Linscombe SD, Braverman MP, Jodari F, Blouin DC, Leech M, Kohli A, Vain P, Cooley JC & Christou P (1996) Development, field evaluation, and agronomic performance of transgenic herbicide resistant rice. Mol. Breed. 2: 359-368

    CAS  Google Scholar 

  • Ono K, Ishimaru K, Aoki N, Takahashi S, Ozawa K, Ohkawa Y & Ohsugi R (1999) Characterization of a maize sucrosephosphate synthase protein and its effect on carbon partitioning in transgenic rice plants. Plant Production Sci. 2: 172-177

    Google Scholar 

  • Padgette SR, Re DB, Barry GF, Eichholtz DE, Delannay X, Fuchs RL, Kishore GM & Fraley RT (1996) New weed control opportunities: Development of soybeans with a Roundup ReadyTM gene In: Duke SO (ed) Herbicide-Resistant Crops — Agricultural, Economic, Environmental, Regulatory and Technological Aspects (pp 53-84). CRC Press, Baton Rouge, USA

    Google Scholar 

  • Pang SZ, DeBoer DL, Wan Y, Ye G, Layton JG, Neher MK, Armstrong CL, Fry JE, Hinchee MAW & Fromm ME (1996) An improved green fluorescent green protein gene as a vital marker in plants. Plant Physiol. 112: 893-900

    PubMed  CAS  Google Scholar 

  • Park SH, Pinson SRM & Smith RH (1996) T-DNA integration into genomic DNA of rice following Agrobacterium inoculation of isolated shoot apices. Plant Mol. Biol. 32: 1135-1148

    PubMed  CAS  Google Scholar 

  • Pawlowski WP & Somers DA (1998a) Transgenic DNA integrated into the oat genome is frequently interspersed by host DNA. Proc. Natl. Acad. Sci. USA 95: 12106-12110

    PubMed  CAS  Google Scholar 

  • Pawlowski WP, Torbert KA, Rines HW & Somers DA (1998b) Irregular patterns of transgene silencing in allohexaploid oat. Plant Mol. Biol. 38: 597-607

    PubMed  CAS  Google Scholar 

  • Perlak FJ, Fuchs RL, Dean DA, McPherson SL & Fischhof DA (1991) Modification of the coding sequence enhances plant expression of insect control protein genes. Proc. Natl. Acad. Sci. USA 88: 3324-3328

    PubMed  CAS  Google Scholar 

  • Pickering RA, Steffenson BJ, Hill AM & Borovkova I (1998) Association of leaf rust and powdery mildew resistance in a recombinant derived from a Hordeum vulgare × H. bulbosum hybrid. Plant Breeding 117: 83-84

    Google Scholar 

  • Pickett AA & Galwey NW (1997) A further evaluation of hybrid wheat. Plant Varieties Seeds 10: 15-32

    Google Scholar 

  • Pinto YM, Kok RA & Baulcombe DC (1999) Resistance to rice yellow mottle virus (RYMV) in cultivated African rice varieties containing RYMV transgenes. Nature Biotechnol. 17: 702-707

    CAS  Google Scholar 

  • Potrykus I (1990) Gene transfer to cereals: an assessment. Bio/Technol. 8: 535-542

    CAS  Google Scholar 

  • Powell K, Gatehouse AMR, Hilder VA & Gatehouse JA (1993) Antimetabolic effects of plant lectins and plant and fungal enzymes on the nymphal stages of two important rice pests, Nilaparvata lugens and Nephotettix cincileps.Entomol. Exp. Appl. 66: 119-126

    CAS  Google Scholar 

  • Rao KV, Rathore KS, Hodges TK, Fu X, Stoger E, Sudhakar D, Williams S, Christou P, Bharathi M, Bown DP, Powell KS, Spence J, Gatehouse AMR & Gatehouse JA (1998) Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown plant hopper. Plant J. 15: 469-477

    PubMed  CAS  Google Scholar 

  • Rasmussen RD, Al-Saady N, Torbert KA, Smith LS, Phillips RL, Rines HW & Somers DA (1998) Antisense inhibition of the Waxy genes in hexaploid oat. Annual Meeting Abstracts, American Society of Agronomy, Baltimore, MD, October 1998 (p 154)

  • Register III JC, Peterson DJ, Bell PJ, Bullock WP, Evans IJ, Frame B, Greenland AJ, Higgs NS, Jepson I, Jiao S, Lewnau CJ, Sillick JM & Wilson HM(1994) Structure and function of selectable and non-selectable transgenes in maize after introduction by particle bombardment. Plant Mol. Biol. 25: 951-961

    PubMed  CAS  Google Scholar 

  • Renno JF, Winkel T, Bonnefous F & Bezançon G (1997) Experimental study of gene flow between wild and cultivated Pennisetum glaucum. Can. J. Bot. 75: 925-931

    Google Scholar 

  • Rhodes CA, Pierce DA, Mettler IJ, Mascarenhas D & Detmer JJ (1988) Genetically transformed maize plants from protoplasts. Science240: 204-207

    PubMed  CAS  Google Scholar 

  • Rooke L, Barro F, Tatham AS, Fido R, Steele S, Bekes F, Gras P, Martin A, Lazzeri PA, Shewry PR & Barcelo P (1999a) Altered functional properties of tritordeum by transformation with HMW glutenin subunit genes. Theor. Appl. Genet. 99: 851-858

    CAS  Google Scholar 

  • Rooke L, Bekes F, Fido R, Barro F, Gras P, Tatham AS, Barcelo P, Lazzeri P & Shewry PR (1999b) Overexpression of a gluten protein in transgenic wheat results in greatly increased dough strength. J. Cereal Sci. 30: 115-120

    CAS  Google Scholar 

  • Russell JA, RoyMK & Sanford JC (1992) Physical trauma and tungsten toxicity reduce the efficiency of biolistic transformation. Plant Physiol. 98: 1050-1056

    PubMed  CAS  Google Scholar 

  • Sakamoto A, Murata A & Murata N (1998) Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Mol. Biol. 38: 1011-1019

    PubMed  CAS  Google Scholar 

  • Salmenkallio-Marttila M, Aspegren K, Âkerman S, Kurtén U, Mannonen L, Ritala A, Teeri TH & Kauppinen V (1995) Transgenic barley (Hordeum vulgare L.) by electroporation of protoplasts. Plant Cell Rep. 15: 301-304

    CAS  Google Scholar 

  • Sanford JC, Smith FD & Russell JA (1993) Optimizing the biolistic process for different biological applications. Methods Enzymol. 217: 483-509

    PubMed  CAS  Google Scholar 

  • Sanford JC, Wolf ED & Allen NK (1990) Method for transporting substances into living cells and tissues and apparatus therefor. US Patent #4945050

  • Sautter C, Waldner H, Neuhaus-Url G, Galli A, Niehaus G & Potrykus I (1991) Micro targeting: high efficiency gene transfer using a novel approach for the acceleration of microparticles. Bio/Technol. 9: 1080-1085

    CAS  Google Scholar 

  • Sears E (1976) Genetic control of chromosome pairing in wheat. Annu. Rev. Genet. 10: 31-51

    PubMed  CAS  Google Scholar 

  • Shah D, Horsch R, Klee H, Kishore G, Winter J, Turmer N, Hironaka C, Sanders P, Gasser C, Aykent S, Siegel N, Rogers S & Fraley R (1986) Engineering herbicide tolerance in transgenic plants. Science 233: 478-481

    CAS  Google Scholar 

  • Shillito R (1999) Methods of genetic transformation: electroporation and polyethylene glycol treatment In: Vasil IK (ed) Molecular Improvement of Cereal Crop (pp 9-20). Kluwer Academic, London

    Google Scholar 

  • Shillito RD, Carswell GK, Johnson CM, DiMaio JJ & Harms CT (1989) Regeneration of fertile plants from protoplasts of elite inbred maize. Bio/Technol. 7: 581-587

    Google Scholar 

  • Shimamoto K, Terada R, Izawa T & Fujimoto H (1989) Fertile transgenic rice plants regenerated from transformed protoplasts. Nature338: 274-276

    CAS  Google Scholar 

  • Shimoni Y, Blechl AE, Anderson OD & Galili G (1997) A recombinant protein of two high molecular weight glutenins alters gluten polymer formation in transgenic wheat. J. Biol. Chem.272: 15488-15495

    PubMed  CAS  Google Scholar 

  • Shizuya H, Birren B, Kim UJ, Mancino V, Slepak T, Tachiiri Y & Simon M (1992) Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl. Acad. Sci. USA 89: 8794-8797

    PubMed  CAS  Google Scholar 

  • Sivamani E, Huet H, Shen P, Ong CA, de Krochko A, Fauquet C & Beachy RN (1999) Rice plant (Oryza sativa L.) containing Rice tungro spherical virus (RTSV) coat protein transgenes are resistant to virus infection. Mol. Breed. 5: 177-185

    CAS  Google Scholar 

  • Sindhu AS, Zheng ZW & Murai N (1997) The pea seed storage protein legumin was synthesized processed, and accumulated stably in transgenic rice. Plant Sci. 130: 189-196

    Google Scholar 

  • Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten, T Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C & Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270: 1804-1806

    PubMed  CAS  Google Scholar 

  • Songstad DD, Somers DA & Griesbach RJ (1995) Advances in alternative DNA delivery techniques. Plant Cell Tiss. Org. Cult. 40: 1-15

    CAS  Google Scholar 

  • Srivastava V, Anderson OD & Ow DW (1999) Single-copy transgenic wheat generated through the resolution of complex integration patterns. Proc. Natl. Acad. Sci. USA 96: 11117-11121

    PubMed  CAS  Google Scholar 

  • Stalker DM, McBride KE & Malyi LD (1988) Herbicide resistance in transgenic plants expressing a bacterial detoxification gene. Science 242: 419-423

    CAS  Google Scholar 

  • Stark-Lorenzen P, Nelke B, Hanssler G, Mühlbach HP & Thomzik JE (1997) Transfer of a grapevine stilbene synthase gene to rice (Oryza sativa L.). Plant Cell Rep. 16: 668-673

    CAS  Google Scholar 

  • Stemmer WPC (1994) Rapid evolution of a protein in vitro by DNA shuffling. Nature370: 389-391

    PubMed  CAS  Google Scholar 

  • Stoger E, Williams S, Keen D & Christou P (1998) Molecular characteristics of transgenic wheat and the effect on transgene expression. Transgenic Res. 7: 463-471

    CAS  Google Scholar 

  • Stoger E, Williams S, Christou P, Down RE & Gatehouse JA (1999) Expression of the insecticidal lectin from snowdrop (Galanthus nivalis agglutinin; GNA) in transgenic wheat plants: effects on predation by the grain aphid Sitobion avenae. Mol. Breed. 5: 65-73

    CAS  Google Scholar 

  • Sudhakar D, Fu X, Stoger E, Williams S, Spence J, Brown DP, Bharathi M, Gatehouse JA & Christou P (1998) Expression and immunolocalisation of the snowdrop lectin, GNA in transgenic rice plants. Transgenic Res. 7: 371-378

    PubMed  CAS  Google Scholar 

  • Sussex IM (1989) Developmental programming of the shoot meristem. Cell 56: 225-229

    PubMed  CAS  Google Scholar 

  • Tada Y, Nakase M, Adachi T, Nakamura R, Shimada H, Takahashi M, Fujimura T & Matsuda T (1996) Reduction of 14–16 kDa allergic proteins in transgenic rice plants by antisense gene. FEBS Lett. 391: 341-345

    PubMed  CAS  Google Scholar 

  • Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Kishitani S, Takabe T & Yokota S (1999) Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Sci. 148: 131-138

    CAS  Google Scholar 

  • Tang K, Tinjuangjun P, Xu Y, Sun X, Gatehouse JA, Ronald PC, Qi H, Lu X, Christou P & Kohli A (1999) Particle-bombardmentmediated co-transformation of elite Chinese rice cultivars with genes conferring resistance to bacterial blight and sap-sucking insect pests. Planta 208: 552-563

    CAS  Google Scholar 

  • Thomas H, Powell W & Aung T (1980) Interfering with regular meiotic behaviour in Avena sativa as a method of incorporating the gene for mildew resistance from A. barbata. Euphytica 29: 635-640

    Google Scholar 

  • Tingay S, McElroy D, Kalla R, Fieg S, Wang M, Thornton S & Brettell R (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J. 11: 1369-1376

    CAS  Google Scholar 

  • Torbert KA, Rines HW, Kaeppler HF, Menon GK & Somers DA (1998) Genetically engineering elite oat cultivars. Crop Sci. 38: 1685-1687

    Google Scholar 

  • Toriyama K, Arimoto Y, Uchimiya H & Hinata K (1988) Transgenic rice plants after direct gene transfer into protoplasts.Bio/Technol. 6: 1072-1074

    CAS  Google Scholar 

  • Tsugawa H, Otsuki Y & Suzuki M (1998) Efficient transformation of rice protoplasts mediated by a synthetic polycationic amino polymer. Theor. Appl. Genet. 97: 1019-1026

    CAS  Google Scholar 

  • Tu J, Ona I, Zhang Q, Mew TW, Khush GS & Datta SK (1998) Transgenic rice variety IR72 with Xa21 is resistant to bacterial blight. Theor. Appl. Genet. 97: 31-36

    CAS  Google Scholar 

  • Tyagi AK, Mohanty A, Bajaj S, Chaudhury A & Maheshwari SC (1999) Transgenic rice: A valuable monocot system for crop improvement and gene research. Crit. Rev. Biotechnol. 19: 41-79

    CAS  Google Scholar 

  • Vain P, Worland B, Clarke MC, Richard G, Beavis M, Liu H, Kohli A, Leech M, Snape J, Christou P & Atkinson H (1998a) Expression of an engineered cystein proteinase inhibitor (oryzastatin-I-β-D86) for nematode resistance in transgenic rice plants. Theor. Appl. Genet. 96: 266-271

    CAS  Google Scholar 

  • Vain P, Worland B, Kohli A, Snape JW & Christou P (1998b) The green fluorescent protein (GFP) as a vital screenable marker in rice transformation. Theor. Appl. Genet. 96: 164-169

    CAS  Google Scholar 

  • Vain P, Worland B, Kohli A, Snape JW, Christou P, Allen GC & Thompson WF (1999) Matrix attachment regions increase transgene expression levels and stability in transgenic rice plants and their progeny. Plant J. 18: 233-242

    CAS  Google Scholar 

  • Valdez M, Cabrera-Ponce JL, Sudhakar D, Herrera-Estrella L & Christou P (1998) Transgenic central American, West African, and Asian elite rice varieties resulting from particle bombardment of foreign DNA into mature seed-derived explants utilizing three different bombardment devices. Annals Bot. 82: 795-801

    Google Scholar 

  • Van Breusegem F, Slooten L, Stassart JM, Botterman J, Moens T, Van Montagu M & Inze D (1999a) Effects of overproduction of tobacco MnSOD in maize chloroplasts on foliar tolerance to cold and oxidative stress. J. Exp. Bot. 50: 71-78

    Google Scholar 

  • Van Breusegem F, Slooten L, Stassart JM, Moens T, Botterman J, Van Montagu M & Inze D (1999b) Overproduction of Arabidopsis thaliana FeSOD confers oxidative stress tolerance to transgenic maize. Plant Cell Physiol. 40: 515-523

    PubMed  CAS  Google Scholar 

  • Vasil IK (1987) Developing cell and tissue culture systems for the improvement of cereal and grass crops. J. Plant Physiol.128: 193-197

    Google Scholar 

  • Vasil V & Vasil IK (1980) Isolation and culture of cereal protoplasts. II. Embryogenesis and plantlet formation from protoplasts of Pennisetum americanum. Theor. Appl. Genet. 56: 97-99

    Google Scholar 

  • Vasil V, Castillo AM, Fromm ME & Vasil IK (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technol. 10: 667-674

    CAS  Google Scholar 

  • Wakita Y, Otani M, Iba K & Shimada T (1998) Co-integration, coexpression and co-segregation of an unlinked selectable marker gene and NtFAD3 gene in transgenic rice plants produced by particle bombardment. Genes Genet. Syst. 73: 219-226

    PubMed  CAS  Google Scholar 

  • Wang GL, Holsten TE, Song WY, Wang HP & Ronald PC (1995) Construction of a rice bacterial artificial chromosome library and identification of clones linked to the Xa-21 disease resistance locus. Plant J. 7: 525-533

    PubMed  CAS  Google Scholar 

  • Wang GL, Song WY, Ruan DL, Sideris S & Ronald PC (1996) The cloned gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv oryzae isolates in transgenic rice. Mol. Plant-Microbe Inter. 9: 850-855

    CAS  Google Scholar 

  • Weeks JT, Anderson OD & Blechl AE (1993) Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum L.). Plant Physiol. 102: 1077-1084

    PubMed  CAS  Google Scholar 

  • Woo SS, Jiang J, Gill BS, Paterson AH & Wing RA (1994) Construction and characterization of a bacterial artificial chromosome library of Sorghum bicolor. Nucl. Acid Res. 22: 4922-4931

    CAS  Google Scholar 

  • Wünn J, Klöti A, Burkhardt PK, Ghosh Biswas GC, Launis K, Iglesias VA & Potrykus I (1996) Transgenic Indica rice breeding line IR58 expressing a synthetic cryIA(b) gene from Bacillus thuringiensis provides effective insect pest control. Bio/Technol. 14: 171-176

    Google Scholar 

  • Wu C, Fan Y, Zhang C, Oliva N & Datta SK (1997) Transgenic fertile japonica rice plants expressing a modified cryIA(b) gene resistant to yellow stem borer. Plant Cell Rep. 17: 129-132

    CAS  Google Scholar 

  • Xu D, Duan X, Wang B, Hong B, Ho THD & Wu R (1996a) Expression of a late embryogenesis abundant protein gene, hvA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 110: 249-257

    PubMed  CAS  Google Scholar 

  • Xu DP, Xue QZ, McElroy D, Mawal Y, Hilder VA & Wu R (1996b) Constitutive expression of a cowpea trypsin inhibitor gene, cpti, in transgenic rice plants confers resistance to two major rice insect pests. Mol. Breed. 2: 167-173

    CAS  Google Scholar 

  • Xu Y, Zhu L, Xiao J, Huang N & McCouch SR (1997) Chromosomal regions associated with segregation distortion of molecular markers in F2 backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.). Mol. Gen. Genet.253: 535-545

    PubMed  CAS  Google Scholar 

  • Yao QA & Kasha KJ (1997) Potential of biolistic transformation of barley microspores based on viability and transient â-glucuronidase activity. Genome 40: 639-643

    CAS  Google Scholar 

  • Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P & Potrykus I (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science287: 303-305

    PubMed  CAS  Google Scholar 

  • Zhang S, Song WY, Chen LL, Ruan D, Taylor N, Ronald P, Beachy R & Fauquet C (1998) Transgenic elite indica rice varieties, resistant to Xanthomonas oryzae pv. Oryzae. Mol Breed. 4: 551-558

    CAS  Google Scholar 

  • Zhang S, Cho MJ, Koprek T, Yun R, Bregitzer P & Lemaux PG (1999) Genetic transformation of commercial cultivars of oat (Avena sativa L.) and barley (Hordeum vulgare L.) using in vitro shoot meristematic cultures derived from germinated seedlings. Plant Cell Rep. 18: 959-966

    CAS  Google Scholar 

  • Zhang W & Wu R (1988) Efficient regeneration of transgenic plants from rice protoplasts and correctly regulated expression of the foreign gene in the plants. Theor. Appl. Genet. 76: 835-840

    Google Scholar 

  • Zheng HH, Li Y, Yu ZH, Li W, Chen MY, Ming XT, Casper R & Chen ZL (1997) Recovery of transgenic rice plants expressing the rice dwarf virus outer coat protein gene (S8). Theor. Appl. Genet. 94: 522-527

    CAS  Google Scholar 

  • Zhong GY, Peterson D, Delaney DE, Bailey M, Witcher DR, Register III JC, Bond D, Li CP, Marshall L, Kulisek E, Ritland D, Meyer T & Hood EE (1999) Commercial production of aprotinin in transgenic maize seeds. Mol. Breed. 5: 345-356

    CAS  Google Scholar 

  • Zhou H, Arrowsmith JW, Fromm ME, Hironaka CM, Taylor ML, Rodriguez D, Pajeau ME, Brown SM, Santino CG & Fry JE (1995) Glyphosate-tolerant CP4 and GOX genes as selectable marker in wheat transformation. Plant Cell Rep. 15: 159-163

    CAS  Google Scholar 

  • Zhu B, Su J, Chan M, Verma DPS, Fan YL & Wu R (1998a) Over expression of a ä(1)-pyrroline-5-carboxylase synthetase gene and analysis of tolerance to water-and salt-stress in transgenic rice. Plant Sci. 139: 41-48

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravindra N. Chibbar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Repellin, A., Båga, M., Jauhar, P.P. et al. Genetic enrichment of cereal crops via alien gene transfer: New challenges. Plant Cell, Tissue and Organ Culture 64, 159–183 (2001). https://doi.org/10.1023/A:1010633510352

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010633510352

Navigation