Skip to main content
Log in

Fracture of precipitated NiTi shape memory alloys

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The fracture mechanisms in single crystal and polycrystalline Ti-50.8at%Ni shape memory alloys containing Ti3Ni4 precipitates are studied using the scanning electron microscope (SEM). Aged materials with three different precipitate sizes (50 nm, 150 nm, and 400 nm), which have interfaces ranging from semi-coherent to incoherent, are considered. The mechanisms of material fracture identified in the single crystal NiTi are: 1. Nucleation, growth, and coalescence of voids from the Ti3Ni4 precipitates, 2. Cleavage fracture on {100} and {110} crystallographic planes, 3. Nucleation, growth, and coalescence of voids from fractured Ti-C inclusions. Cleavage and ductile tearing mechanisms also operate in polycrystalline NiTi, however, since the Ti-C inclusions are an artifact of single crystal growth processes, mechanism 3 was not discovered in the polycrystalline materials. Cleavage fracture and ductile tearing are found to act in conjunction, with the relative dominance of one over the other depending on the local precipitate size and concentration. As the Ti3Ni4 precipitate size increases to about 400 nm, the overall fracture is dominated by failure mechanism 1, and the cleavage markings become diffuse. Finally, we assert that the high tensile ductility of drawn NiTi polycrystals is due partially to the fact that drawn bar and wire stock usually have a strong {111} fiber texture. Such a texture promotes the initiation of the transformation at low stresses and concurrently prevents primary cleavage on the {100} or {110} planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Otsuka, K. and Wayman, C.M. (1998) Shape Memory Materials Cambridge University Press, New York, NY.

    Google Scholar 

  2. Melton, K.N. and Mercier, O. (1979). Acta. Metall. 27, 137.

    Google Scholar 

  3. Miyazaki, S., Imai, T., Igo, Y. and Otsuka, K. (1986). Metall. Trans. 17A, 115.

    Google Scholar 

  4. Strnadel, B., Ohashi, S., Ohtsuka, H., Miyazaki, S. and Ishihara, T. (1995). Mat. Sci. Eng. A203, 187.

    Google Scholar 

  5. Strnadel, B., Ohashi, S., Ohtsuka, H., Ishihara, T. and Miyazaki, S. (1995). Mat. Sci. Eng. A202, 148.

    Google Scholar 

  6. Lim, T.J. and McDowell, D.L. (1995). J. Int. Mat. Sys. Struc. 6, 817.

    Google Scholar 

  7. Lexcellent, C. and Bourbon, G. (1996). Mech. Mater. 24, 59.

    Google Scholar 

  8. Tobusi, H., Haschisuka, T., Yamada, S. and Lin, P-H. (1997). Mech. Mater. 26, 35.

    Google Scholar 

  9. Xie, Z., Liu, Y. and Van Humbeeck, J. (1989). Acta Mater. 46, 1989.

    Google Scholar 

  10. Tobusi, H., Haschisuka, T., Hashimoto, T. and Yamada, S. (1998). J. Eng. Mater. Tech. 120, 64.

    Google Scholar 

  11. Lim, T.J. and McDowell, D.L. (1999). J. Eng. Mater. Tech. 121, 9.

    Google Scholar 

  12. Gall, K., Sehitoglu, H., Chumlyakov, Y.I. and Kireeva, I.V. (1999). Scr. Mater. 40, 7.

    Google Scholar 

  13. Stroz, D., Bojarski, Z., Ilczuk, J., Lekston, Z. and Morawiec, H. (1991). J. Mater. Sci. 26, 1741.

    Google Scholar 

  14. Li, D.Y., Wu, X.F. and Ko, T. (1991). Philos. Mag. A 63, 603.

    Google Scholar 

  15. Jordan, L., Masse, M., Collier, J.-Y. and Bouquet, G. (1994). J. Alloys Comp. 211/212, 204.

    Google Scholar 

  16. Stachowiak, G.B. and McCormick, P.G. (1988). Acta. Metall. 36, 291.

    Google Scholar 

  17. Tobushi, H., Ohashi, Y., Hori, T. and Yamamoto, H. (1992). Exp. Mech. 32, 304.

    Google Scholar 

  18. McCormick, P.G. and Liu, Y. (1994). Acta. Mater. 42, 2407.

    Google Scholar 

  19. Bigeon, M.J. and Morin, M. (1995). J. De. Phys., 5, C2-385.

    Google Scholar 

  20. Tamura, H., Mitose, K. and Suzuki, Y. (1995). J. De. Phys. 5, C8-617.

    Google Scholar 

  21. Garrison, W.M. and Moody, N.R. (1987). J. Phys. Chem. Solids 48, 1035.

    Google Scholar 

  22. Allen, N.P., Hopkins, B.E. and McLennan, J.E. (1956). Proc. Roy. Soc. 234, 221.

    Google Scholar 

  23. Mao, S.X. and Qiao, L. (1998). Mater. Sci. Eng. A258, 187.

    Google Scholar 

  24. Yoo, M.H. and Fu, C.L. (1991). Scri. Metall. 25, 2345.

    Google Scholar 

  25. Chang, K.-M., Darolia, R. and Lipsitt, H.A. (1992). Acta Metall. Mater. 40, 2727.

    Google Scholar 

  26. Yoo, M.H. and Fu, C.L. (1992). Mater. Sci. Eng. A153, 470.

    Google Scholar 

  27. Margevicius, R.W. and Lewandowski, J.J. (1994) Metall. Trans. 25A, 1457.

    Google Scholar 

  28. Flores, K.M. and Dauskardt, R.H. (1997) Scri. Metall. 36, 1377.

    Google Scholar 

  29. Tadaki, T., Nakata, Y., Shimizu, K. and Otsuka, K. (1986). Trans. Jap. Inst. Met. 27, 731.

    Google Scholar 

  30. Treppmann, D., Hornbogen, E. and Wurzel, D. (1995). J. De. Phys. 5, C8-569.

    Google Scholar 

  31. Gall, K., Sehitoglu, H., Chumlyakov, Y.I., Kireeva, I.V. and Maier, H.J. (1999). J. Eng. Mat. Tech. 121, 19.

    Google Scholar 

  32. Gall, K., Sehitoglu, H., Chumlyakov, Y.I., Kireeva, I.V. and Maier, H.J. (1999) J. Eng. Mat. Tech. 121, 28.

    Google Scholar 

  33. Gall, K., Sehitoglu, H., Chumlyakov, Y.I., Zuev, Y.L. and Karaman, I. (1998). Scr. Mater. 39, 699.

    Google Scholar 

  34. Gall, K., Sehitoglu, H., Chumlyakov, Y.I. and Kireeva, I.V. (1999) Acta Mater. 47, 1203.

    Google Scholar 

  35. Matsumoto, O., Miyazaki, S., Otsuka, K, and Tamura, H. (1987). Acta Mater. 35, 2137.

    Google Scholar 

  36. Hahn, G.T. and Rosenfield, A.R. (1975). Metall. Trans. 6A, 653.

    Google Scholar 

  37. Gall, K. and Sehitoglu, H. (1999). Int. J. Plas. 15, 69.

    Google Scholar 

  38. Patoor, E., Amrani, El M., Eberhardt, A. and Berveiller, M. (1995). J. De. Phys. 5, C2-495.

    Google Scholar 

  39. Bhattacharya, K. and Kohn, R.V. (1996). Acta Mater. 44, 529.

    Google Scholar 

  40. Shu, Y.C. and Bhattacharya, K. (1998). Acta Mater. 46, 5457.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gall, K., Yang, N., Sehitoglu, H. et al. Fracture of precipitated NiTi shape memory alloys. International Journal of Fracture 109, 189–207 (2001). https://doi.org/10.1023/A:1011069204123

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011069204123

Navigation