Skip to main content
Log in

Second-Order Optimality Conditions in Generalized Semi-Infinite Programming

  • Published:
Set-Valued Analysis Aims and scope Submit manuscript

Abstract

This paper deals with generalized semi-infinite optimization problems where the (infinite) index set of inequality constraints depends on the state variables and all involved functions are twice continuously differentiable. Necessary and sufficient second-order optimality conditions for such problems are derived under assumptions which imply that the corresponding optimal value function is second-order (parabolically) directionally differentiable and second-order epiregular at the considered point. These sufficient conditions are, in particular, equivalent to the second-order growth condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben-Tal, A.: Second-order and related extremality conditions in nonlinear programming, J. Optim. Theory Appl. 31 (1980), 143–165.

    Google Scholar 

  2. Bonnans, J. F., Cominetti, R. and Shapiro, A.: Second order optimality conditions based on parabolic second order tangent sets, SIAM J. Optim. 9 (1999), 466–492.

    Google Scholar 

  3. Bonnans, J. F. and Shapiro, A.: Optimization problems with perturbations, a guided tour, SIAM Rev. 40 (1998), 228–264.

    Google Scholar 

  4. Bonnans, J. F. and Shapiro, A.: Perturbation Analysis of Optimization Problems, Springer, New York, 2000.

    Google Scholar 

  5. Gauvin, J. and Dubeau, F.: Differential properties of the marginal function in mathematical programming, Math. Programming Study 19 (1982), 101–119.

    Google Scholar 

  6. Goberna, M. A. and López, M. A.: Linear Semi-Infinite Optimization, Wiley, Chichester, 1998.

    Google Scholar 

  7. Graettinger, T. J. and Krogh, B. H.: The acceleration radius: a global performance measure for robotic manipulators, IEEE J. Robotics Automation 4 (1988), 60–69.

    Google Scholar 

  8. Hettich, R. and Kortanek, K. O.: Semi-infinite programming: theory, methods and applications, SIAM Rev. 35(3) (1993), 380–429.

    Google Scholar 

  9. Hettich, R. and Still, G.: Semi-infinite programming models in robotics, In: J. Guddat et al. (eds), Parametric Optimization and Related Topics II, Math. Res. 62, Akademie-Verlag, Berlin, 1991, pp. 112–118.

    Google Scholar 

  10. Hettich, R. and Still, G.: Second order optimality conditions for generalized semi-infinite programming problems, Optimization 34 (1995), 195–211.

    Google Scholar 

  11. Jongen, H. Th., Rückmann, J.-J. and Stein, O.: Disjunctive optimization: critical point theory, J. Optim. Theory Appl. 93(2) (1997), 321–336.

    Google Scholar 

  12. Jongen, H. Th., Rückmann, J.-J. and Stein, O.: Generalized semi-infinite optimization: a first order optimality condition and examples, Math. Programming 83(1) (1998), 145–158.

    Google Scholar 

  13. Klatte, D.: Stability of stationary solutions in semi-infinite optimization via the reduction approach, In: W. Oettli and D. Pallaschke (eds), Advances in Optimization, Lecture Notes in Econom. and Math. Systems 382, Springer, New York, 1992.

    Google Scholar 

  14. Klatte, D.: Stable local minimizers in semi-infinite optimization: regularity and second-order conditions, J. Comput. Appl. Math. 56 (1994), 137–157.

    Google Scholar 

  15. Krabs, W.: On time-minimal heating or cooling of a ball, In: Internat. Ser. Numer. Math. 81, Birkhäuser, Basel, 1987, pp. 121–131.

    Google Scholar 

  16. Kyparisis, J.: On uniqueness of Kuhn-Tucker multipliers in non-linear programming, Math. Programming 32 (1985), 242–246.

    Google Scholar 

  17. Lempio, F. and Maurer, H.: Differential stability in infinite-dimensional nonlinear programming, Appl. Math. Optim. 6 (1980), 139–152.

    Google Scholar 

  18. Polak, E.: On the mathematical foundations of nondifferentiable optimization in engineering design, SIAM Rev. 29 (1987), 21–89.

    Google Scholar 

  19. Reemtsen, R. and Rückmann, J.-J. (eds): Semi-infinite Programming, Kluwer Acad. Publ., Dordrecht, 1998.

    Google Scholar 

  20. Rockafellar, R. T. and Wets, R. J.-B.: Variational Analysis, Springer-Verlag, New York, 1997.

    Google Scholar 

  21. Rückmann, J.-J. and Shapiro, A.: First-order optimality conditions in generalized semi-infinite programming, J. Optim. Theory Appl. 101 (1999), 677–691.

    Google Scholar 

  22. Shapiro, A.: Second-order sensitivity analysis and asymptotic theory of parametrized, nonlinear programs, Math. Programming 33 (1985), 280–299.

    Google Scholar 

  23. Shapiro, A.: Perturbation theory of nonlinear programs when the set of optimal solutions is not a singleton, Appl. Math. Optim. 18 (1988), 215–229.

    Google Scholar 

  24. Shapiro, A.: On concepts of directional differentiability, J. Optim. Theory Appl. 66 (1990), 477–487.

    Google Scholar 

  25. Stein, O.: On level sets of marginal functions, Preprint No. 80, RWTH Aachen, Dept. of Mathematics (C), 1998.

  26. Stein, O. and Still, G.: On optimality conditions for generalized semi-infinite programming problems, J. Optim. Theory Appl. 104 (2000), 443–458.

    Google Scholar 

  27. Weber, G.-W.: Generalized semi-infinite optimization: on some foundations, Vychisl. Tekhnol. 4 (1999), 41–61.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rückmann, JJ., Shapiro, A. Second-Order Optimality Conditions in Generalized Semi-Infinite Programming. Set-Valued Analysis 9, 169–186 (2001). https://doi.org/10.1023/A:1011239607220

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011239607220

Navigation